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We investigate several tricritical models on the square lattice by means of Monte Carlo simulations. These
include the Blume-Capel model, Baxter’s hard-square model, and theq=1, 3, and 4 Potts models with vacan-
cies. We use a combination of the Wolff and geometric cluster methods, which conserves the total number of
vacancies or lattice-gas particles and suppresses critical slowing down. Several quantities are sampled, such as
the specific heatC and the structure factorCs, which accounts for the large-scale spatial inhomogeneity of the
energy fluctuations. We find that the constraint strongly modifies some of the critical singularities. For instance,
the specific heatC reaches a finite value at tricriticality, whileCs remains divergent as in the unconstrained
system. We are able to explain these observed constrained phenomena on the basis of the Fisher renormaliza-
tion mechanism generalized to include a subleading relevant thermal scaling field. In this context, we find that,
under the constraint, the leading thermal exponentyt1 is renormalized to 2−yt1, while the subleading exponent
yt2 remains unchanged.
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I. INTRODUCTION

In experiments, many systems undergoing phase transi-
tions are subject to external constraints such as the conver-
sation of particle numbers in a mixture. Such systems are
described in terms of the canonical ensemble and thus typi-
cally display a behavior different from that of unconstrained
models, which are described by the grand ensemble. An ex-
ample is the superfluid transition in the3He-4He mixtures
f1g, whose universal properties can be described by a dilute
XY model. The Hamiltonian of the latticeXY model reads

H/kBT = − Ko
ki,jl

sWi ·sW j + Do
k

usWku2, s1d

where the spins can assume a unit vector of two components,

usWku=1, or a vacancyusWu=0W. The sum kl is over nearest-
neighbor lattice pairs, andK andD are the coupling constant
and the chemical potential of vacancies, respectively. The
mole fraction of3He in the experiment corresponds to the
vacancy densityr=s1/Ndoks1−usWku2d, with N the total num-
ber of lattice sites. ForD→−`, the vacancies are excluded,
and the models1d reduces to the pureXY model. In three
dimensions, this model undergoes a second-order phase tran-
sition, and the critical coupling constantKcsDd is an increas-
ing function ofD. The critical line terminates at a tricritical
point sKt ,Dtd. Since the upper tricritical dimensionality of
the Osnd model snù1d is equal to 3, significant exact infor-
mation is availablef1g. A set of universal parameters can be
exactly obtained by means of mean-field analyses and also
by renormalization groupsRGd calculations of the Landau-
Ginzburg-Wilson Hamiltonian. The leading and subleading
thermal critical exponents areyt1=2 andyt2=1 f1g. Thus, as
the tricritical point is approached, one simply expects that
the specific heatC diverges with indexa=2−3/yt1=1/2. We
mention that, as generally expected, the tricritical scaling
behavior at three dimensions suffers from logarithmic cor-

rections whose expressions can be found in Ref.f1g. How-
ever, typical experiments take place at a constant densityr
instead at a constant chemical potentialD. It was reportedf2g
that, at the tricritical pointsKt ,rtd, the specific heatC has
only a finite value witha=−0.9s1d, apparently different from
the aforementioned indexa=1/2. Thus, the theoretical de-
scription of the experiment in Ref.f2g uses the diluteXY
model with aconservednumber of vacancies. This means
that an external constraint is imposed on the systems1d.
Since the pertinent3He and4He mixtures are liquid, the con-
straint is of the “annealed” typef3g. Therefore, the vacancies
should be able to move freely over the lattice of models1d.

The effect of a constraint on a critical systems has already
been studied for decadesf3–6g. As early as in 1965, Syozi
introducedf4g a decorated Ising model, which is intimately
connected with annealed systems. The Syozi model can be
exactly transformed into the spin-1

2 model, and for dimen-
sionalityd.2 the critical exponents of these two models are
related as

as = − a/s1 − ad, bs = b/s1 − ad, ns = n/s1 − ad, . . . ,

s2d

wherea and b are the standard critical indices for the spe-
cific heatC and the magnetization densitym, respectively,
and n=1/yt is the inversion of the thermal exponent. The
subscript “s” represents the Syozi model. Later, this con-
straint mechanism was discussed in a more general context
by Essam and Garelickf5g and by Fisherf6g. It was argued
f5,6g that the relationss2d are not specific to the Syozi model,
but are more generally satisfied by equilibrium models with a
divergent specific heatC. Thus, Eq.s2d predicts that, as long
asa.0, the constrained critical specific heatC can at most
reach afinite value instead of being divergent. For systems
with a convergent specific heata,0, Fisherf6g pointed out
that no renormalization of critical exponents as Eq.s2d oc-
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curs, but additional corrections can be introduced by the con-
straint. Further, for the marginal casea=0—i.e.,C normally
diverges logarithmically in unconstrained systems—it was
shown f6g that, again, the constraint leads to a convergent
specific heat. Since then, Fisher’srenormalizedcritical expo-
nents have been used extensivelyf3,7–10g.

More general theories were then formulated for con-
strained systems, including a theory of constrained tricritical
phenomenaf11,12g. Besides vacancies, constraints can be
imposed on volumes or pressure, etc. It was arguedf11,12g
that, depending on the type or strength of the constraint, a
continuous transition may become Fisher renormalized, re-
main unchanged, or become first order. The special point
where the transition remains unchanged was referred to as a
special “tricritical” point f11g.

In the context of the RG theory, Imry and co-workersf13g
applied thee-expansion technique to a generalized Landau-
Ginzburg-Wilson Hamiltonian. The effect of the constraint is
accounted for by an additional parameter, and they found
four distinct fixed points: the tricritical IsingsTId, the critical
Ising sCId, the renormalizedtricritical Ising sRTId, and the
renormalizedcritical Ising sRCId fixed point. The critical ex-
ponents at these fixed points are related asaRCI=−aCI/ s1
−aCId and aRTI=−aTI / s1−aTId, in agreement with Eq.s2d.
For the spatial dimensionalitydù3, TI and RTI correspond
to Gaussian and spherical fixed points, respectivelyf13g.
Thus, at the fixed points TI and RTI, the critical index is
equal to aTI =1/2 and aRTI=−1, respectively. For the
3Heu4He mixtures, if one assumes that constrained tricriti-
cal behavior is governed by the fixed point RTI, the theoret-
ical predictionaRTI=−1 is in good agreement with the ex-
perimental resulta=−0.9s1d f2g.

However, to our knowledge, numerical tests of these theo-
ries are still scarce; in particular, the finite-size behavior of
constrained critical systems has only attracted limited atten-
tion. Thus, very recently, we performedf14g a Monte Carlo
investigation of the constrained three-dimensional Blume-
Capel sBCd model f15,16g. The phase diagram of the BC
model is analogous to that of the diluteXY model, and in
three dimensions, the two tricritical models share a common
set of critical exponents. At the tricritical point, the con-
strained specific heat reaches a finite value with the index
a=−0.99s3d f14g, in agreement with the experimental data
f2g and the RG calculations in Ref.f13g. Nevertheless, the
exponent of the power law describing the decay of the cor-
relation function at tricriticality remains unchanged under the
constraint. In this sense, the constraint does not lead to a
change of the universality class. In Ref.f14g, we also gener-
alized Fisher’s approachf6g for application totricritical sys-
tems. For the tricritical BC model in three dimensions, this
mechanism also predicts that the unconstrained and con-
strained indices are related asaco=−aun/ s1−aund=−1, in
agreement with the RG calculations in Ref.f13g. Here, the
superscripts “co” and “un” are for constrained and uncon-
strained systems, respectively. However, for a general tric-
ritical system, it was predictedf14g that, in addition to the
relation aco=−aun/ s1−aund, other cases can occur, depend-
ing on the relative magnitude of the leading and subleading
thermal exponentsyt1 andyt2 and the spatial dimensionality
d.

In order to verify these theoretical predictions, the present
paper presents a more extensive study of constrained tricriti-
cal phenomena in two dimensions. The systems investigated
include the BC modelf15,16g, Baxter’s hard-square model
f17,18g, and theq=1, 3, and 4 Potts models with vacancies
f19g. In comparison with the three-dimensional case, the in-
vestigation of two-dimensional systems has some advan-
tages. First, Monte Carlo simulations can be performed for
larger linear systems sizes. Second, the tricritical points of
the tricritical q=1 Potts model and Baxter’s hard-square lat-
tice gas are exactly known, and those of the other systems
have been determined with a precision in the sixth or seventh
decimal place. In contrast, for the three-dimensional BC
model, the error estimation of the tricritical point is so far
restricted to the fourth decimal placef14g. Third, Baxter’s
hard-square lattice gasf17,18g is in the same universality
class as the tricritical Blume-Capel model, so that the two
models can serve for independent tests.

The outline of the remaining part of this paper is as fol-
lows. Section II reviews the models, the sampled quantities,
and the geometric cluster algorithm, which plays an impor-
tant role in the present investigation. In Sec. III, we apply the
Fisher renormalization mechanism in the generalized context
of tricritical scaling. Numerical results are presented in Sec.
IV, and a brief discussion is given in Sec. V.

II. MODELS, SIMULATIONS, AND SAMPLED
QUANTITIES

A. Models

The Blume-Capel model.In the development of the theory
of tricritical phenomena, the spin-1 model known as the BC
model has provided the foundation. The model was indepen-
dently introduced by Blumef15g and Capelf16g. The re-
duced Hamiltonian reads

H/kBT = − Ko
ki,jl

sisj + Do
k

sk
2 ss= 0, ± 1d. s3d

This Hamiltonian is identical to Eq.s1d when the vector or-
der parametersW is replaced by a scalars. Further, in three
dimensions, the phase diagram of Eq.s3d is analogous to that
of the dilute XY model s1d. The universal tricritical expo-
nents of the two-dimensional BC models3d are known from
exact solutionsf17,18g; they can also be calculated in the
context of the Coulomb gas theoryf20,21g and are included
in the predictions of conformal field theoryf22,23g. The
leading and subleading thermal exponents areyt1=9/5 and
yt2=4/5, and themagnetic ones areyh1=77/40 andyh2
=9/8, respectively. Using a sparse transfer-matrix technique
and the finite-size scaling, we have locatedf24g the tricritical
point of the square-lattice BC model asKt=1.643 175 9s1d
and Dt=3.230 179 7s2d; the tricritical vacancy density isrt

=0.454 950 6s2d. These results are based on the requirement
that both the leading magnetic and energy-energy correlation
lengths simultaneously reach their theoretical values. They
are consistent with the existing estimateKt=1.64s2d andDt

=3.22s4d f25g, and the precision is considered to be sufficient
in the present investigation.
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Baxter’s hard-square model.We also investigate Baxter’s
tricritical hard-square lattice gasf17,18g, which belongs to
the same universality class as the tricritical BC model. The
Hamiltonian of a general lattice gas on the square lattice can
be written as

H = − Ko
knnl

sis j − J o
hnnnj

sksl + Do
k

sk, s4d

wheres=0,1 represents the absence and presence of a par-
ticle, respectively. The sumsknnl andhnnnj are over nearest-
neighbor and second-nearest-neighbor sites, respectively. For
the hard-square lattice gas, it is required thatK→−`; i.e.,
the particles have a “hard”-core so that nearest-neighbor sites
cannot be occupiedsimultaneously.For this case, the tricriti-
cal point is exactly knownf17,18g: Jt=lns3+Î5d and Dt

=lnf8s1+Î5dg. The corresponding vacancy density isrt=s5
+Î5d /10.

The tricritical q=3 Potts model.Just as the tricritical BC
model, the tricriticalq=3 Potts modelf19g can be obtained
by including vacancies in the “pure”q=3 Potts model. The
Hamiltonian of such a diluteq-state Potts model then reads

H = − Ko
knnl

dsi,s j
s1 − dsi,0

d − Do
k

dsi,0
ss = 0,1, . . . ,qd,

s5d

where the lattice site is occupied by a Potts variables
=1, . . . ,q or by a vacancys=0. Nonzero couplingsK occur
only between nonzero Potts variables. Forq,4, the phase
diagram in thesK ,Dd plane resembles that of the BC model:
a tricritical point occurs between the continuous and the first-
order line of transitions. At the tricritical pointsKt ,Dtd, the
critical exponents aref20–23g yt1=12/7, yt2=4/7, andyh1
=40/21. Also for this model we used the sparse transfer-
matrix method to locatef24g the tricritical point: Kt
=1.649 913s5d, Dt=3.152 173s10d, with a corresponding va-
cancy densityrt=0.345 72s5d.

The dilute q=4 Potts model.The q=4 Potts model is a
marginal casef19g, since the subleading leading thermal ex-
ponent satisfiesyt2=0. The leading thermal and magnetic
exponents aref21,22g yt1=3/2 andyh1=15/8, respectively.
The phase transition of a pure Potts model withq.4 is of
the first-order typef17g. We investigate the diluteq=4 Potts
model at the point where the leading and subleading thermal
fields vanish. We have locatedf24g this “fixed” point asKt
=1.457 90s1d, Dt=2.478 44s2d, and the corresponding va-
cancy density isrt=0.212 07s2d.

The tricritical q=1 Potts model.It has already been
known for a long timef26g that the tricritical q=1 Potts
model is equivalent to the critical Ising model. The Ising
clusters of the critical Ising model, a group of spins con-
nected by bonds between equal nearest-neighbor spins, are
described by the magnetic exponent of the tricriticalq=1
Potts model. Here, we shall illustrate this equivalence, start-
ing from the diluteq-state Potts models5d, which, for the
caseq=1, simplifies as

H = − Ko
knnl

sis j + Do
k

sk ss = 0,1d. s6d

For D→−`, the vacancies are excluded, and the random-
cluster representation describes the “pure” bond-percolation
problem. Thus, the random-cluster representation of Eq.s6d
corresponds with a mixed-site–bond-percolation model. Be-
cause of the attraction between the nonvacancies, this dilute
model is different from the conventional site–bond-
percolation modelf27g, in which the vacancies are randomly
distributed over the lattice; i.e., different sites areuncorre-
lated. Nevertheless, in general, one expects that the dilute
q→1 Potts model, described by Eq.s6d, is still in the perco-
lation universality class, and the question arises if it has a
tricritical point. The answer follows after substituting the re-
lation s=ss+1d /2 in Eq. s6d. Apart from a constant, the
Hamiltonian s6d reduces to the Ising model in a magnetic
field:

H = − KsIdo
knnl

sisj − Ho
k

sk ssi = ± 1d, s7d

with the relations

KsId = K/4 H = − D/2 + zK/4, s8d

wherez is the lattice coordination number. Thus, the Ising
critical point at Kc

sId and H=0 appears in the diluteq→1
Potts models6d at Kt=4Kc

sId andDt=2zKc
sId. Since the critical

singularity is not percolation like, this point qualifies as the
tricritical point of theq→1 Potts model. The spin-up–down
symmetry of the critical Ising model yields the vacancy den-
sity of the dilute Potts modelrt=1/2 attricriticality. Relation
s8d shows that the temperaturelike parametersK andD con-
tribute toKsId andH in the Ising model. Therefore, the lead-
ing and subleading thermal exponents of the two-
dimensional tricriticalq=1 Potts model simply follow as

yt1 = yh
sId = 15/8, yt2 = yt

sId = 1. s9d

The leading magnetic exponent of the two-dimensional tric-
ritical q=1 Potts model isyh1=187/96f26g.

B. Monte Carlo methods

The Hamiltonian for theq-state Potts model remains in-
variant under a global permutation of two of theq Potts
states. Thus, one can apply the conventional Swendsen-Wang
f28g and Wolff f29g cluster algorithms to simulate these mod-
els. However, for most tricritical models defined abovesex-
cept for the tricriticalq=1 Potts modeld, these cluster algo-
rithms are apparently not suitable or sufficient, since they do
not operate on the vacancies. For unconstrained systems, a
simple solution is to combine these conventional algorithms
and the Metropolis method. However, the problem arises as
to what sort of Monte Carlo algorithm is appropriate for
constrained systems. In principle, one can apply a Kawasaki-
like Monte Carlo methodf30g, which is particle conserving.
Unfortunately, this method suffers from a serious critical
slowing down, and thus simulations are restricted to small
system sizes. This may be one of the reasons why the num-
ber of numerical investigations in this subject is rather lim-
ited.
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In the present work, we make use of the so-called geo-
metric cluster methodf31–33g, which is developed on the
basis of spatial symmetries, such as invariance under the
spatial inversion and rotation operations. This algorithm
moves groups of spins and particles or vacancies over the
lattice in accordance with the Boltzmann distribution, so that
the total numbers of spins and particles and vacancies are
conserved. It has been shownf31–33g for several models that
the percolation threshold of the geometric clusters coincides
with the phase transitions, so that the critical slowing down
is effectively suppressed.

Then, the constraint is fully realized by a combination of
the Wolff and geometric cluster methods, of which the
former flips between variables in different Potts states. A
particular feature of such constrained simulations is that they
hardly suffer from a critical slowing down even near tricriti-
cality.

C. Sampled quantities

Conventional quantities.During Monte Carlo simulations,
we sampled several quantities, including the moments of the
order parameter, the energy density, etc. The magnetic sus-
ceptibility is then obtained from the fluctuations of the order
parameterm as x=L2km2l. For the BC models1d, m is just
the magnetization density; for Baxter’s hard-square lattice
gas,m is the difference of the vacancy densities on the two
sublattices of the square lattice—i.e.,m=rs1d−rs2d; and for
the tricritical q=3 and 4 state Potts models, we definem2

= 1
2oiÞ jsri −r jd2 whereri is the density of theith Potts state.

An energylike quantitye was sampled as nearest-neighbor
correlations for the BC and theq=1, 3, and 4 state Potts
models with vacancies. For Baxter’s hard-square lattice gas,
the nearest-neighbor sites cannot be occupied simulta-
neously, so that we samplede as next-nearest-neighbor cor-
relations. On this basis, a specific-heat-like quantity is de-
fined as C=L2ske2l−kel2d, which is proportional to the
second derivative of the reduced energy with respect to the
coupling constantK. Moreover, we sampled energy-energy
correlationsgesrd=ke0erl−kel2. For a lattice with linear sys-
tem sizeL, the distancer was taken as the half-diagonal
distance—i.e.,r =Î2L /2. Since the vacancy densityr also
behaves energy like, we define a compressibilitylike quantity
P=L2skr2l−krl2d, which is expected to behave analogously
asC.

In Monte Carlo studies of critical phenomena, the univer-
sal Binder ratiof34g plays a useful role. Thus, we sampled
several dimensionless quantities as

Qm =
km2l2

km4l
, Qe =

kse− ēd2l2

kse− ēd4l
, Qr =

ksr − r̄d2l2

ksr − r̄d4l
,

s10d

whereē=kel and r̄=krl.
Structure factors.Apart from the singular behavior of

physical observables, a second-order phase transition is gen-
erally accompanied by long-range correlations in time and
space, and thus large-scale spatial fluctuations exist for the
physical observables, such as the magnetization densitym

and the energy densitye. It is thus justified to investigate the
influence of the constraint on these spatial fluctuations. For
this purpose, we define a set of quantities on the basis of
spatial inhomogeneities of the magnetization, the energy, and
the vacancy density. Consider the Fourier expansion of the
order parametermsx,yd for a system of sizeL:

mk,l =
1

L2E
0

L

dx dy msx,ydexpf2pisxk+ yld/Lg. s11d

Obviously, m0,0 is just the global magnetization densitym,
and the magnetic susceptibility isx=L2km2l=L2km0,0

2 l; the
numbermk,l skÞ0 or l Þ0d represents the spatial inhomoge-
neity of msx,yd. Since we are especially interested in fluc-
tuations on the largest scales, we define a susceptibilitylike
quantityxs in terms ofmk,l for the smallest wave numbers:

xs = L2km−1,0m1,0+ m0,−1m0,1l = L2kms
2l, s12d

where, for later convenience, a quantityms has been intro-
duced. We shall refer toxs as the structure factor of the
susceptibilityx.

Analogously, we sampled the structure factor of the spe-
cific heatC asCs=L2ke−1,0e1,0+e0,−1e0,1l=L2kes

2l and that of
the compressibilityP as Ps=L2kr−1,0r1,0+r0,−1r0,1l=L2krs

2l,
whereek,l and rk,l are obtained from Fourier expansions of
the energy and the vacancy density,esx,yd and rsx,yd, re-
spectively. On this basis, we sampled the dimensionless ra-
tios

Qsm=
kms

2l2

kms
4l

, Qse=
kes

2l2

kes
4l

, Qsr =
krs

2l2

krs
4l

. s13d

The physical meaning of these structure factors can be
gleaned from a comparison with the conventional quantities.
For instance, bothx andxs represent fluctuation strengths of
the order parameterm and can be expressed in terms of a
summation involving the magnetic correlation function,
whose scaling behavior is described by the correlation func-
tion exponentsh and n. Thus, we expect that, in uncon-
strained systems, the structure factorsxs, Cs, andPs display
the same scaling behavior asx, C, andP, respectively. How-
ever, as we shall see, there are interesting differences in con-
strained systems.

III. FINITE-SIZE SCALING BEHAVIOR IN CONSTRAINED
SYSTEMS

A finite-size analysis of constrained phenomena precisely
at tricriticality has recently been reportedf14g. This analysis
follows the basic idea of the Fisher renormalization mecha-
nism, which has been formulated forcritical systemsf6g. In
this section, we shall briefly review and moreover generalize
the procedures in Ref.f14g, such that we can also account for
the constrained scaling behavior due to deviations from the
tricritical vacancy density.

As a first step, we express the finite-size scaling formula
of the reduced free energy near tricriticality as
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fst1,t2,Ld = L−dfssLyt1t1,L
yt2t2,1d + fast1,t2d, s14d

wheret1 andt2 are the leading and subleading thermal fields,
respectively. In the language of the BC model,t1 and t2 are
analytic functions of the coupling constantK and the chemi-
cal potentialD. The symbolsfs and fa are the singular and
analytical parts of the free energy, respectively. The expecta-
tion value of vacancy densitykrl follows by differentiation
as

− krst1,t2dl =
]f

]D
= a1L

yt1−dfs
s1,0dst1Lyt1,t2L

yt2d + a2L
yt2−dfs

s0,1d

3st1Lyt1,t2L
yt2d + a1fa

s1,0dst1,t2d + a2fa
s0,1dst1,t2d,

s15d

wherea1=]t1/]D and a2=]t2/]D are constants. The super-
scriptssi , jd representi differentiations with respect tot1 and
j differentiations tot2. Linearization at the tricritical point
yields

− dr = b1L
2yt1−dt1 + b2L

yt1+yt2−dt2 + b3t1 + b4t2 + ¯ ,

s16d

where b1, b2, b3, and b4 are constants anddr=krst1,t2dl
−krs0,0dl is the deviation of the vacancy density from its
tricritical value. The constraint that the vacancy density be
fixed at the tricritical value yieldsdr=0 in Eq. s16d. As a
consequence, the thermal fieldst1 andt2 are related, but in a
way which still depends on which terms in the right-hand
side of Eq.s16d dominate. We consider the case of largeL
and then distinguish three cases:

sid For 2yt1−d.0 and yt1+yt2−d.0, one hasLyt1t1
~Lyt2t2—i.e., t2@ t1 and K−Ktc. t2—so that the leading
thermal exponent of the constrained systems is equal to the
subleading exponentyt2.

sii d For 2yt1−d.0 but yt1+yt2−d,0, one hasLyt1t1
~Ld−yt1t2. The leading thermal exponent is thus renormalized
asyt1→d−yt1. Again, we havet2@ t1 andK−Ktc. t2.

siii d For 2yt1−d,0—i.e., the unconstrained specific heat
does not diverge at tricriticality—t1 is approximately propor-
tional to t2 and no exponent renormalization occurs.

Therefore, for a tricritical system with a divergent specific
heats2yt1−d.0d, the leading thermal exponentyt1 is renor-
malized tod−yt1 under the constraint, while the subleading
one remains unchanged. Thus, the finite-size scaling relation
for the difference ofK to the tricritical point is sK−Ktd
→ sK−KtdLd−yt1+a0sK−KtdLyt2, with a0 a constant.

Next, we consider the case that the fixed vacancy density
r differs slightly from the tricritical valuert—i.e., dr=r
−rtÞ0 in Eq. s16d. We first consider casessid andsii d—i.e.,
2yt1−d.0. We rewrite Eq.s16d as

Lyt1t1 = − b1
−1fsdr + b4t2dLd−yt1 + b2t2L

yt2 + ¯ g, s17d

where we have omitted the term with amplitudeb3 which
contributes a smaller power ofL than the left-hand side.
After substitution in Eq.s14d, neglecting less relevant terms,
we obtain

fst1,t2,Ld = L−dfs„− b1
−1Ld−yt1sdr + b4t2d

− sb2/b1dLyt2t2,L
yt2t2,1… + fas0,t2d, s18d

which can be written more simply as

fst1,t2,Ld = L−dfs8sL
d−yt1t18,L

yt2t2d + fas0,t2d, s19d

where t18;dr+b4t2. This means that the deviationsr−rtd
from the tricritical density combines witht2 to act as a scal-
ing field with a renormalization exponentd−yt1; i.e., the
finite-size effect of this linear combination is multiplied by
Ld−yt1.

In the constrained system, we wish to express the con-
strained free energy inK andr instead oft2 andr. In cases
sid andsii d, the constraint equations16d shows thatt1! t2 for
largeL. Sincet1 and t2 are written as linear combinations of
K and D, we may writeK−Kt. t2 apart from corrections
with negative powers ofL. Thus we have

t18 = dr + asK − Ktd, t2 = K − Kt. s20d

Then, the scaling behavior of constrained quantities can
be obtained from differentiations of Eq.s19d with respect to
appropriate scaling fields.

For casesiii d, no exponent renormalization occurs anddr
approaches a linear combination oft1 andt2; i.e., the distance
r−rt behaves in leading order as the scaling fieldst1 and t2,
independent ofL.

The essential element of the above procedure is the solu-
tion of the constraint equationdr=const in terms of a rela-
tion betweenK and D. In the parameter spacest1,t2d, this
solution is sketched in Fig. 1. The path of the constrained
system, the dashed line, is singular at tricriticality, and for
the case 2yt1−d.0, renormalization of critical exponents
occurs.

As mentioned earlier, in addition to uniform fluctuations,
a second-order phase transition is also accompanied by inho-
mogeneous large-scale spatial fluctuations. Without the con-
straint, these two types of fluctuations display the same scal-
ing behavior. However, their behavior becomes qualitatively
different in constrained systems when the uniform fluctua-
tions are sufficiently strongly suppressed by the constraint. A

FIG. 1. Illustration of the application of the Fisher renormaliza-
tion mechanism to tricritical systems. The tricritical pointsKt ,Dtd is
denoted as the black circle, and the solid single and double lines
represent the critical and first-order-transition lines, respectively.
The variablest1 andt2 are the leading and subleading thermal fields
at the tricritical point, respectively. The constraint that the vacancy
densityr is fixed at the tricritical valuert is described by the dashed
line, part of which coincides with the first-order transition line. As a
consequence of the constraint, the scaling fieldst1 andt2 are related,
and this relation is singular at tricriticality.
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good test for such a difference is to compare the critical
behavior of the structure factorsxs, Cs, andPs with x, C, and
P, respectively. According to Eq.s19d, the exponents de-
scribing the behavior ofC and P are modified as long as
2yt1−d.0. In contrast, since the constraint does not lead to
a change of the universality class, one may expect that the
leading finite-size scaling behavior ofCs andPs remains un-
changed at tricriticality. This will be confirmed by our nu-
merical data later.

We conclude this section by pointing out the following
implicit assumption. In the derivation of Eq.s16d, we require
that the expectation valuekrl of the vacancy density be a
constant, while, in fact, we should require thatr itself is a
constant. ForL→`, no difference exists betweenkrl andr.
In a finite system, however,r need not be equal tokrl; i.e.,
fluctuations of the vacancy density are allowed even ifkrl is
a constant. As mentioned earlier, the Monte Carlo simula-
tions to be performed in this work conserve the number of
vacancies, which leads to a “stronger” constraint thankrl
=sconstd. Thus, the application of the Fisher renormalization
mechanism in this paper used the assumption that suppress-
ing the fluctuations ofr aboutkrl does not lead to a quali-
tative change in the leading scaling behavior of the con-
strained system.

IV. RESULTS

A. Tricritical q=1 Potts model

The tricritical q=1 Potts model is particularly suitable to
illustrate the Fisher renormalization mechanism for con-
strained tricritical phenomena. The equivalence of this model
with the Ising model in a magnetic field, as mentioned in
Sec. II, makes it possible to use the known properties of the
latter model, and thus there is no obvious need for simula-
tions. The energy density and the specific heat in the two
models are related as

kel ~ kesIdl + 2kmsIdl, C ~ CsId + 4xsId, s21d

where the superscriptsId is for the Ising model. Thus, the
leading behavior of the Potts specific heatC is just that of the
Ising magnetic susceptibilityxsId. This illustrates the fact that
the leadingq=1 Potts tricritical thermal exponentyt1 is equal
to the magnetic exponentyh

sId of the Ising model. However,
the leading scaling behavior ofkel of the Potts models6d is
“accidentally” governed by the exponentyt

sId, the subleading
Potts thermal exponentyt2. This is due to the symmetry be-
tween plus and minus Ising spins.

The dilute q=1 Potts model with its vacancy densityr
fixed at rt=1/2 is equivalent to an Ising model with zero
magnetization. Thus, the constrained susceptibilityxsId van-
ishes in Eq.s21d, and the Potts and Ising specific heatsC and
CsId become identical. Further, the constraint on the Ising
model is of the magnetic type, so that the scaling behavior of
CsId is not qualitatively influenced. Thus, one can conclude
that, under the constraint, the Potts specific heatC is gov-
erned by the second thermal exponentyt2—i.e., the Ising
thermal exponentyt

sId=1. This is as predicted in Sec. III for
the case 2yt1−d.0, yt1+yt2−d.0.

B. Tricritical Blume-Capel model

1. Unconstrained systems

For the unconstrained tricritical systems in the present
paper, the nature of the critical behavior is now well estab-
lishedf20,21g. The finite-size expression of the reduced free
energy is given by Eq.s14d, and the scaling behavior of the
aforementioned conventional quantities is obtained by differ-
entiating Eq.s14d with respect to appropriate scaling fields.
These quantities include the energy densitykel, the specific
heatC, the magnetic susceptibilityx, the energy-energy cor-
relation functiongesr =L /Î2d, etc. Precisely at tricriticality,
one has

kesLdl = e0 + e1L
yt1−2 + e2L

yt2−2 + ¯ ,

CsLd = c0 + c1L
2yt1−2 + c2L

yt1+yt2−2 + c3L
2yt2−2 + ¯ ,

PsLd ~ CsLd,

xsLd = x0 + x0L
2yh1−4 + ¯ ,

gesLd = g1L
2yt1−4 + g2L

yt1+yt2−4 + ¯ . s22d

The constants,e0, c0, andx0, arise from the analytic part of
the free energy density. As discussed above, we expect that
the structure factorsCs, Ps, andxs behave in a similar way as
the physical quantitiesC, P, andx, respectively.

For a comparison with constrained phenomena investi-
gated later, we simulated the tricritical BC model on the
square lattice precisely at the tricritical pointf24g Kt
=1.643 175 9s1d and Dt=3.230 179 7s2d. The Monte Carlo
simulations used a combination of Metropolis and Wolff
steps, which allows fluctuations of the magnetization as well
as the density of the vacancies. Periodic boundary conditions
were applied, and the system sizes were taken in the range
4øLø32. The Monte Carlo data forC, P, Cs, and Ps are
shown versusL8/5 in Fig. 2. The approximate linearity of
these data lines indicates that all these quantities are specific

FIG. 2. Specific-heat-like quantities in the unconstrained BC
model at tricriticality vsL8/5. These quantities includeC/10s+d,
2Ps3d, Csshd, and 10Pssnd. The approximate linearity of the data
illustrates that the leading behavior of these quantities is governed
by the exponent 2yt1−2, with yt1=9/5.
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heat like; the scaling behavior is described by Eq.s22d with
the exponentyt1=9/5. Further, we observed thatx~xs
~L2yh1−2=L37/20 snot shownd. The data for the vacancy den-
sity r is shown versusLyt1−2=L−1/5 in Fig. 3, where we in-
clude theL→` tricritical value rt=0.454 950 6s2d, taken
from Ref. f24g.

For the universal ratios defined in Sec. II includingQm,
Qe, Qr, Qsm, Qse, andQsr, we fitted the data according to the
least-squares criterion by

QsLd = Q + b1L
yi + b2L

2yi , s23d

where the terms with amplitudesb1 andb2 account for cor-
rections with the irrelevant scaling exponentyi =−1 for the
q=2 Potts tricritical universality class in two dimensions
f17,18,21,22g. The results, shown in Table I, indicate that the
universal asymptotic values ofQe and Qse are identical to
those ofQr andQsr, respectively. This is as expected, since
both kel andr are energy like.

2. Constrained systems

Simulations of the constrained BC model used a combi-
nation of Wolff and geometric cluster steps, as discussed
earlier. Periodic boundary conditions were used, and the sys-
tem sizes were taken in the range 6øLø720. For each sys-
tem size, about 53107 samples were taken.

Constrained behavior at the tricritical point.The tricriti-
cal point was taken from Ref.f24g as Kt=1.643 175 9s1d,
rt=0.454 950 6s2d. For a finite systemL, however, the total
number of vacancies,Vt=L2rt, is generally not an integer. In
that case, the actual simulations were performed atV−=fVtg
and V+=fVt+1g, where bracketsfg denote the integer part.

For a sampled quantityA, its tricritical valueAt is then ob-
tained by a linear interpolation asAt=xA++s1−xdA−, with
x=Vt−V−; the statistical error margin ofAt is estimated as
dAt=ÎsxdA+d2+fs1−xddA−g2. The data for the constrained
specific heatC and the energy densitykel are shown in Figs.
4 and 5. In comparison with Figs. 2 and 3, these figures
indicate that the scaling behavior ofC and kel is indeed
modified by the constraint. In particular, the constrained spe-
cific heatC reaches only a finite value instead of being di-
vergent for L→`. The exponents used for the horizontal
axes in Figs. 4 and 5 are those predicted in Sec. III. For the
tricritical BC model in two dimensions, the Fisher mecha-
nism predicts that the leading thermal singularity in con-
strained system is determined by the subleading exponent
yt2, because the renormalized exponent 2−yt1=1/5 is
smaller thanyt2=4/5. Thus, one obtains the leading finite-
size behavior kel~Lyt2−2=L−6/5 and C~L2yt2−2=L−2/5, in
agreement with Figs. 4 and 5, respectively. By differentiating
Eq. s19d with respect to the thermal fieldst1 and t2, the
finite-size dependence ofC and kel follows as

C = c0 + a1L
2yt2−2 + a2L

yt2−yt1 + a3L
2−2yt1 + ¯ ,

kel = e0 + b1L
yt2−2 + b2L

−yt1 + ¯ , s24d

where the constantsc0 ande0 are equal to those in Eq.s22d.
The kel andC data were fitted by Eq.s24d, with yt1 fixed at
9/5. In order to obtain a satisfactory fit, the data for small
system sizesLø8 were discarded. We obtainyt2=0.798s4d
and 0.803s4d from the fit of C and kel, respectively. These
results are in good agreement with the exact valueyt2=4/5.

The gesrd data forr =Î2L /2 at tricriticality are shown in
Fig. 6. The approximate linearity indicates that the scaling
behavior ofge is still governed by the leading thermal expo-
nent yt1—i.e., ge~L2yt1−4=L−2/5 as described by Eq.s22d.
This confirms that, as expected, the power law describing the
spatial correlations is not affected by the constraint, although
the amplitude become negative. For an illustration of the
influence of the constraint on inhomogeneous fluctuations,
we sampled the structure factorsCs andPs, which display the
same scaling behavior asC andP in the unconstrained sys-
tems, as shown in Fig. 2. The constrained data forCs andPs
are shown in Fig. 7. In contrast to the conventional quantities
C andP, the leading behavior of the tricritical structure fac-
tors Cs and Ps remains the sameas in the unconstrained
systems. The numerical data were fitted by Eq.s22d with the
exponentyt2 fixed at 4/5. After a cutoff for small systems
sizesLø8, we obtainyt1=1.799s2d and 1.798s2d from the
fits for Cs and Ps, respectively. These results are in good
agreement with the exact valueyt1=9/5.

FIG. 3. Vacancy densityr of the unconstrained BC model at
tricriticality vs Lyt1−2=L−1/5. As expected, the vacancy densityr is
an energylike quantity.

TABLE I. Fit results for the dimensionless quantities of the constrainedsConstr.d and the unconstrained
sUncon.d Blume-Capel model.

Quantity Qm Qe Qr Qsm Qse Qsr

Uncon. 0.6620s5d 0.596s2d 0.597s2d 0.4349s5d 0.4720s8d 0.4705s8d
Constr. 0.9821s1d 0.3331s2d — 0.81222s5d 0.84810s6d 0.84804s6d
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As an illustration of the influence that the energylike con-
straint has on magnetic quantities, we sampled the quantities
x andxs. The data are shown in Fig. 8, where the exponent
37/20 used for the horizontal scale is equal to 2yh1−2 with
yh1=77/40f20–22g. Thus, the constraint does not change the
leading scaling behavior of magnetic quantities. This is ap-
parently related to the fact that the chemical potentialD, the
conjugate parameter of the vacancy densityr, is not directly
coupled to the magnetic field.

The data for the universal ratios, includingQm, Qe, Qr,
Qsm, Qse, andQsr, were also fitted by Eq.s23d. We assume
that, under the constraint, finite-size corrections still mainly
arise from the irrelevant field. After a cutoff for small system
sizesLø10, satisfactory fits can be obtained. The results are
shown in Table I, where the quoted error margins are two
statistical standard deviations. Thus, although the dimension-
less ratios are universal, they assume different values in un-
constrained and constrained systems. The reason is that these
ratios depend on the spatial profile of correlation functions.
Here the constraint plays a similar role as the boundary con-

ditions, the aspect ratios, etc. A particular feature in Table I is
that the constrained ratioQe=0.3331s2d<1/3. This indicates
that the fluctuations of the energy density resemble the nor-
mal sGaussiand distribution. As reflected by the fact that the
specific heatC remains finite in constrained systems, this is
because singularities of energy-related quantities are strongly
suppressed so that the “background”sthe analytical part of
the free energyd plays an enhanced role.

Constrained behavior near the tricritical point.In addi-
tion to the tricritical point, the Fisher renormalization mecha-
nism also predicts the scaling behavior as a function of the
distancesK−Kt and r−rt. In this case, the dimensionless
ratios serve a good choice for such investigations. TheQm
data atK=Kt are partly shown in Fig. 9 as a function the
vacancy density. They indicate that the exponentyr of the
deviation of the vacancy densityr−rt is much smaller than
1—i.e., yr!1—in agreement with the prediction by Eq.
s19d. TheQm data were fitted by

Qmsr,Ld = Qm + o
k=1

4

aksr − rtdkLks2−yt1d + b1L
yi + b2L

2yi

+ c1sr − rtdL2−yt1+yi + c2sr − rtd2L2−yt1 + ¯ ,

s25d

where the term withc1 describes the “mixed” effect of the
leading irrelevant field and the scaling fieldt1 in Eq. s19d.
The term withc2 arises from the nonlinear dependence oft1
on the distancer−rt. The irrelevant exponent was fixed at
yi =−1. Discarding the data for for small system sizesL
ø12, we obtainyt1=1.796s5d, in agreement with the exact
valueyt1=9/5.

As shown earlier, precisely at the tricritical point, the
leading scaling behavior of the structure factors is not renor-
malized under the constraint. However, we argue here that
the constrained scaling behavior of these quantities as a func-
tion of the distance to the tricritical point is still governed by
Eq. s19d. Thus, the leading finite-size scaling ofCsr ,K ,Ld
andCssr ,K ,Ld can be expressed as

FIG. 4. Specific heatC of the constrained BC model at tricriti-
cality vs L2yt2−2=L−2/5. The approximate linearity at the left-hand
side implies thatC is governed by the subleading thermal exponent
yt2, as predicted by the Fisher renormalization.

FIG. 5. Energy densitykel of the constrained BC model at tric-
riticality vs Lyt2−2=L−6/5. The approximate linearity for largeL is in
agreement with the Fisher renormalization.

FIG. 6. Energy-energy correlationsgesrd of the constrained BC
model at tricriticality vsL2yt1−4=L−2/5. The distancer was taken as
L /Î2, the half-diagonal system size. The approximate linearity in-
dicates that the critical exponent forgesrd is not renormalized.
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Cst1,t2,Ld = cst1,t2d + L2yt2−2Cst1L
2−yt1,t2L

yt2d,

Csst1,t2,Ld = cast1,t2d + L2yt1−2Csst1L
2−yt1,t2L

yt2d,

s26d

where t1=sr−rtd+asK−Ktd and t2=sK−Ktd act as scaling
fields. The termscst1,t2d and cast1,t2d arise from the ana-
lytical background. For the caseK=Kt, Taylor expansions of
Eq. s26d yield the behavior ofCssr ,Ld as

Cssr,Ld = ca0 + ca1sr − rtd + ca2sr − rtd2 + L2yt1−2Fd0

+ o
k

aksr − rtdkLks2−yt1d + b1L
yi + b2L

2yiG . s27d

We fitted Cs data forK=Kt by Eq. s27d. After a cutoff for
small system sizesLø10, we obtain the leading thermal
exponentyt1=1.793s8d<9/5.

For an infinite system with the coupling constantK=Kt,
the specific-heat-like quantitiesC and Cs behave asC~ sr
−rtd−ar and Cs~ sr−rtd−asr, respectively. The exponentsar

and asr can be obtained by regardingL as a scaling factor,
which satisfiessr−rtdL2−yt1=1. From Eq.s26d, one simply
has ar=s2yt2−dd / sd−yt1d=−2 and asr=s2yt1−dd / sd−yt1d
=8. Similarly, for the caser=rt, the specific heatC and the
structure factorCs behaveC~ sK−Ktd−a andCs~ sK−Ktd−as

in an infinite system, respectively. Following the same pro-
cedure, one can obtaina=s2yt2−dd /yt2=−1 and as=s2yt1

−dd /yt2=2.
As an illustration of the renormalization exponents due to

the difference ofK to the tricritical point, theQsm data for
r=rt are partly shown in Fig. 10 as a function ofK. We fitted
theseQsm data by

FIG. 7. Structure factors,Cs/10snd and PssLd, of the con-
strained BC model at tricriticality vs.L2yt1−2=L8/5. The approximate
linearity suggests that the critical exponents for these structure fac-
tors are not renormalized.

FIG. 8. Susceptibilitylike quantitiesx / shd and xs310snd of
the constrained BC model at tricriticality vsL2yh1−2=L37/20. The
approximate linearities suggest that the constraint does not qualita-
tively influence the leading scaling behavior of magnetic quantities.

FIG. 9. Dimensionless ratioQm of the constrained BC model
with K=Kt vs vacancy densityr. The system sizes areL=16s+d, 24
s3d, 32 shd, 48 ssd, 64 snd, and 96sLd. The small finite-size
dependence of the slopes of these curves indicates that the critical
exponent governing the scaling behavior ofQm as a function ofr
−rt is much smaller than 1.

FIG. 10. Dimensionless ratioQsm of the constrained tricritical
BC model at a fixed tricritical vacancy densityr=rt vs coupling
constantK. The data points1, 3, h, s, n, L, and * represent
L=24, 32, 40, 48, 56, 64, and 80, respectively.
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QsmsK,Ld = Qsm+ o
k=1

4

a1ksK − KtdkLkyt2 + b1L
yi + b2L

2yi

+ c1sK − KtdLyt2+yi + c2sK − Ktd2Lyt2 + ¯ .

s28d

The exponentyi were fixed at −1, and the data for small
system sizes Lø10 were discarded. We obtainyt2
=0.806s7d, in agreement with the exact valueyt2=4/5.

C. Baxter’s hard-square model

Within the same universality class of the tricritical BC
model, we also investigate Baxter’s hard-square lattice gas
f17,18g, which is described by Eq.s4d. Constrained simula-
tions used the geometric cluster algorithm only and took
place at the exactly known tricritical pointJt=lns3+Î5d and
rt=s5+Î5d /10. We used periodic boundary conditions and
24 system sizes in the range 4øLø360. Again, the actual
simulations were performed for two integer numbers of va-
cancies, and the tricritical quantities are obtained by a linear
interpolation. This model serves an independent test for the
constrained behavior discussed in the above subsection. We
observe that, as expected, the constrained tricritical phenom-
ena of this lattice gas and of the BC model are very similar.
For instance, the constrained tricritical specific heat of the
lattice gas also reaches a finite value asL−2/5, illustrated in
Fig. 11. For this reason, we do not give a detailed account of
the numerical results.

D. Tricritical q=3 Potts model

Using a combination of Metropolis, Wolff, and geometric
cluster steps, we first simulated the unconstrainedq=3 Potts
model with vacancies at the tricritical pointf24g Kt
=1.649 913s5d and Dt=3.152 17s1d. The system sizes were
taken in the range 6øLø32, and the specific heatC and the
energy densitykel were sampled. As expected, we found that
these data are well fitted by Eq.s22d, with the exact thermal
exponentsyt1=12/7 andyt2=4/7.

Next, we performed constrained simulations at tricritical-
ity using the determined tricritical vacancy densityf24g rt

=0.345 72s5d. The system sizes were chosen as 20 values in
the range 6øLø280. The Monte Carlo data forC and kel
are shown in Figs. 12 and 13, respectively. Again, the tric-
ritical specific heatC is suppressed and remains finite under
the constraint. These figures confirm that the leading behav-
ior of C and kel is governed by the exponents 2−2yt1 and
−yt1, respectively, as predicted by Eq.s24d. For a quantitative
confirmation, theC data were fitted by Eq.s24d. First, we
fixed yt1 at 12/7f20–22g. After discarding the data for small
system sizesLø10, we obtainyt2=0.572s3d<4/7. Next, we
fixed yt2 at 4/7 and obtainyt1=1.714s2d<12/7.

The scaling behavior of magnetic quantities and the struc-
ture factors also remains unchanged under the constraint, as
expected. As an illustration, theCs data are shown in Fig. 14,
indicating that at tricriticalityCs diverges indeed asL2yt1−2

=L10/7.

E. Dilute q=4 Potts model

The q=4 Potts model is a marginal case of the tricritical
Potts model in the sense that the critical and the tricritical
branch merge atq=4; accordingly, the subleading thermal

FIG. 11. Constrained specific heatC of Baxter’s hard-square
lattice gas at tricriticality vsL2yt2−2=L−2/5, in agreement with the
prediction of the Fisher renormalization. FIG. 12. Constrained specific heatC of the q=3 Potts model at

tricriticality vs L2yt2−2=L−6/7, in agreement with the prediction of
the Fisher renormalization.

FIG. 13. Energy densitykel of the constrainedq=3 Potts model
at tricriticality vs Lyt2−2=L−9/7, as predicted by the Fisher
renormalization.

DENG, HERINGA, AND BLÖTE PHYSICAL REVIEW E71, 036115s2005d

036115-10



exponent vanishes—i.e.,yt2=0 f19g. In this case, we expect
that the leading thermal exponent in constrained systems is
equal to 2−yt1=1/2. This corresponds with casesii d in Sec.
III. Constrained simulations were performed at the “fixed”
point—i.e., Kt=1.457 90s1d and rt=0.212 07s2d f24g—
where logarithmic corrections due to the marginal field asso-
ciated withyt2 are absent. The system sizes took 20 values in
the range 12øLø280. TheCs data are plotted in Fig. 15.
They show no indication that the constraint introduces
slowly convergent finite-size corrections. According to Eq.
s24d, the C and kel data are plotted versus 1/L andL−3/2 in
Figs. 16 and 17, respectively. In contrast to the tricritical
systems discussed above, the leading terms in Eq.s24d are
insufficient even to approximately describe these numerical
data. Remarkably, the energy densitykel has a maximum
when the system sizeL increases. The data were fitted by

kel = e0 + e1L
−3/2 + e2L

−2 + e3L
−5/2, s29d

where the exponents were fixed as −3/2=−yt1, −2=yt2−2,
and −5/2=−yt1−1. After discarding the data for small sys-
tem sizes Lø12, the fit yields e0=1.329 377s4d, e1

=1.53s2d, e2=−11.0s2d, ande3=12.2s4d, where we quote er-
ror margins of two standard deviations. The constantse1 and
e2 have opposite signs. Similarly, we fitted theC data by

C = c0 + c1L
−1 + c2L

−3/2 s30d

and obtainc0=3.960s4d, c1=−2.1s4d, and c2=−23s1d. The
amplitudec1 is relatively small in comparison withc2, which
explains the strong nonlinearity in Fig. 16.

V. DISCUSSION

The geometric cluster method serves well for a detailed
investigation of the finite-size scaling behavior of con-
strained tricritical systems. For theq=4 Potts model with
vacancies and the other systems, the constrained data can be
explained by the second and first cases of the Fisher renor-
malization described in Sec. III, respectively. For clarity, a
comparison of the unconstrained and constrained tricritical
scaling behavior of several quantities is listed in Table II.
These include the energy densitykel, the specific heatC, the
structure factorCs, and the magnetic susceptibilityx. These
data illustrate that the scaling behavior of conventional ener-
gylike quantities is significantly modified under the con-
straint, while that of magnetic quantities and structure factors

FIG. 14. Structure factor of the specific heatCs of the con-
strainedq=3 Potts model at tricriticality vsL2yt1−2=L10/7.

FIG. 15. Structure factor of the specific heatCs of the con-
strained diluteq=4 Potts model at the “fixed” point vsL2yt1−2=L.
The approximate linearity suggests that the leading exponent forCs

is still yt1=3/2.

FIG. 16. Specific heatC of the constrained diluteq=4 Potts
model at the fixed point vsL2−2yt1=1/L. The significant curvature
suggests that the approximation for the data ofC by the term with
c1 in Eq. s30d is insufficient.

FIG. 17. Energy densitykel of the constrained diluteq=4 Potts
model at tricriticality vsL−yt1=L−3/2. The significant curvature sug-
gests that the approximation for the data ofkel by the term withe1

in Eq. s29d is insufficient.
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remains unchanged. Generally speaking, the agreement be-
tween the numerical results and the theory isquantitatively
satisfactory.

During the derivations of the scaling formulas in Sec. III,
the Fisher renormalization mechanism makes essential use of
the universal renormalization exponents in the unconstrained
free energy density as described by Eq.s14d. This simply
means that the present annealed type of constraint does not
modify the universality class, and thus the critical exponents
in the constrained and unconstrained systems are directly re-
lated. We further demonstrate this point by investigating the
scaling behavior of the structure factorsCs and Ps, which
remains unchanged under the constraint. Therefore, on the
basis of the summary in the above paragraph, we conclude
that the Fisher renormalization mechanism straightforwardly
and completely describes the essential physics of the con-
strained scaling behavior. It then seems that there is no ap-
parent need to apply other theories. Nevertheless, in this con-
text, we mention Imry’s theoryf11,12,36g for constrained
critical phenomena, which is more general and includes the
Fisher renormalization mechanismf6g as a special case. This
theory has been applied to the Baker-Essam modelf35g, a
compressible Ising model, where a “special” tricritical point
was reported. Such a point, where no renormalization of
critical exponents occurs even for systems witha.0, has
not been observed in the present investigation. For the ex-
perimental dataf2g at thel transition in the3He-4He mix-
tures, both the Fisher approach and the RG calculations of
Imry and co-workersf13g can be employed. This has been
further confirmedf14g by the Monte Carlo simulations of the
tricritical Blume-Capel model in three dimensions. Although
the RG calculationsf13,36g can be regarded to correspond
with the second case of the Fisher renormalization mecha-
nism, as described in Sec. III, the connection of these two

theories is not always obvious. Thus, it seems justified to ask
the following questions:s1d In addition to the Baker-Essam
modelf35g, can one further test the theoretical predictions in
Refs. f11g and f12g in other systems? In particular, can one
observe the aforementioned “special” tricritical point?s2d
How are the RG calculationsf13g related to the Fisher renor-
malization mechanism?s3d How can the effect of the sub-
leading thermal field be included in the RG calculations
f13g?

Although the mean-field theory is “unrealistic” in general,
it can yield an intuitive physical picture of a phase transition.
Moreover, for a sufficiently high spatial dimensionality, the
mean-field theory can correctly predict universal parameters.
Therefore, we investigatedf14g the influence of the con-
straint on the mean-field version of the Blume-Capel model.
Just as in finite spatial dimensions, the mean-field BC model
has a line of second- and first-order transitions and a tricriti-
cal point. However, under the constraint, it can be shown that
the whole transition line reduces to mean-fieldcritical Ising
like.

Finally, we remark that, in our application of the Fisher
renormalization mechanism,only the leading terms are kept,
as mentioned in Sec. III. It is obvious that including sublead-
ing terms leads to additional finite-size corrections besides
those arising from the irrelevant scaling fields. In many cases
f8–10,37,38g, these additional terms can be important and
thus should be taken into account properly. In fact, it was
reportedf37,38g that, in severalcritical systems, the leading
terms of the constrained specific heatC are so small that the
finite-size scaling behavior ofC is mainly described by the
subleading terms. Even for the percolation model in whichC
is zero, a correction-to-scaling of an exponent −0.503s4d ex-
ists f38g in two dimensions when the total number of occu-
pied bonds and sites is fixed at criticality. In the language of
finite-size scaling, the exponents for the subleading terms
can be describedf38g by −nu2yt1−du, wheren=1,2, . . . is an
integer. For the tricritical Potts systems in the present paper,
these exponents are −n7/4 for q=1, −n8/5 for q=2, −n10/7
for q=3, and −n for q=4. As a result, in comparison with the
corrections due to the irrelevant scaling fields, the contribu-
tions from the subleading terms are insignificant and were
frequently neglected in the present finite-size analyses.
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