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Constrained tricritical phenomena in two dimensions
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We investigate several tricritical models on the square lattice by means of Monte Carlo simulations. These
include the Blume-Capel model, Baxter’s hard-square model, ang=the 3, and 4 Potts models with vacan-
cies. We use a combination of the Wolff and geometric cluster methods, which conserves the total number of
vacancies or lattice-gas particles and suppresses critical slowing down. Several quantities are sampled, such as
the specific hea€ and the structure factd,, which accounts for the large-scale spatial inhomogeneity of the
energy fluctuations. We find that the constraint strongly modifies some of the critical singularities. For instance,
the specific hea€ reaches a finite value at tricriticality, whilgs remains divergent as in the unconstrained
system. We are able to explain these observed constrained phenomena on the basis of the Fisher renormaliza-
tion mechanism generalized to include a subleading relevant thermal scaling field. In this context, we find that,
under the constraint, the leading thermal exporygnis renormalized to 24, while the subleading exponent
Yio remains unchanged.
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I. INTRODUCTION rections whose expressions can be found in REf. How-
pver, typical experiments take place at a constant depsity
. . . Shstead at a constant chemical potenalt was reported2]
tions are subject to external constraints such as the convels T ; -

éhat, at the tricritical pointK,,p,), the specific hea€ has

sation of particle numbers in a mixture. Such systems ar L o .
described in terms of the canonical ensemble and thus typf2n|y a finite value withw=-0.9(1), apparently different from

cally display a behavior different from that of unconstrainedthe. aforemenhoned |n.de¢x:1./2. Thus, the theore_t|cal de-
models, which are described by the grand ensemble. An e)§_cr|pt|0n.of the experiment in Ref2] uses the dl!ut@(Y
ample is the superfluid transition in tHele-*He mixtures ~Model with aconservednumber of vacancies. This means
[1], whose universal properties can be described by a dilut at an external constraint is imposed on the systén

XY model. The Hamiltonian of the lattic§Y model reads ince the pertinerfiHe and®He mixtures are liquid, the con-
straint is of the “annealed” type3]. Therefore, the vacancies

HIkgT=- KE 5 §J + DE |§k|27 (1) should be able to move freely over the lattice of modg!

(i) k The effect of a constraint on a critical systems has already
here th . it vector of t tbeen studied for decad@3—6]. As early as in 1965, Syozi
V:’ ere the Spins can assume a unit vec o.r oftwo componen ﬁ1troduced[4] a decorated Ising model, which is intimately
IS/=1, or a vacancyi§|=0. The sum() is over nearest- connected with annealed systems. The Syozi model can be
neighbor lattice pairs, anld andD are the coupling constant exactly transformed into the spé‘l-model, and for dimen-

and the chemical potential of vacancies, respectively. Thgjonalityd> 2 the critical exponents of these two models are
mole fraction of°He in the experiment corresponds to the rg|ated as

vacancy density=(1/N)2,(1-|5J?), with N the total num-

ber of lattice sites. FoD — -, the vacancies are excluded, as=-a/(1-a), Bs=B/(1-a), vs=v/(1-a), oy

and the model1) reduces to the purXY model. In three ®)
dimensions, this model undergoes a second-order phase tran-

sition, and the critical coupling constalk(D) is an increas- wherea and 3 are the standard critical indices for the spe-
ing function of D. The critical line terminates at a tricritical cific heatC and the magnetization density, respectively,
point (K;,Dy). Since the upper tricritical dimensionality of and »=1/y, is the inversion of the thermal exponent. The
the O(n) model(n=1) is equal to 3, significant exact infor- subscript “s” represents the Syozi model. Later, this con-
mation is availablé1]. A set of universal parameters can be straint mechanism was discussed in a more general context
exactly obtained by means of mean-field analyses and aldoy Essam and Garelidi6] and by Fishef6]. It was argued

by renormalization grougRG) calculations of the Landau- [5,6] that the relation$2) are not specific to the Syozi model,
Ginzburg-Wilson Hamiltonian. The leading and subleadingbut are more generally satisfied by equilibrium models with a
thermal critical exponents asg; =2 andy,,=1[1]. Thus, as divergent specific hed. Thus, Eq.(2) predicts that, as long
the tricritical point is approached, one simply expects thalas a>0, the constrained critical specific heatcan at most
the specific heaf diverges with indexx=2-3/y,;=1/2. We  reach afinite value instead of being divergent. For systems
mention that, as generally expected, the tricritical scalingvith a convergent specific heat<0, Fisher[6] pointed out
behavior at three dimensions suffers from logarithmic corthat no renormalization of critical exponents as E). oc-

In experiments, many systems undergoing phase tran
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curs, but additional corrections can be introduced by the con- In order to verify these theoretical predictions, the present
straint. Further, for the marginal case=0—i.e.,C normally ~ paper presents a more extensive study of constrained tricriti-
diverges logarithmically in unconstrained systems—it wascal phenomena in two dimensions. The systems investigated
shown[6] that, again, the constraint leads to a convergeninclude the BC mode|15,16], Baxter’s hard-square model
specific heat. Since then, Fishereniormalizedcritical expo-  [17,1§, and theq=1, 3, and 4 Potts models with vacancies
nents have been used extensivi8y7—10. [19]. In comparison with the three-dimensional case, the in-
More general theories were then formulated for con-yestigation of two-dimensional systems has some advan-

strained systems, including a theory of constrained tricriticatages' First, Monte Carlo simulations can be performed for
phenomeng11,12. Besides vacancies, constraints can bggyger jinear systems sizes. Second, the tricritical points of

imposed on volumes or pressure, efc. It was arg{tl&dlZ]. the tricritical g=1 Potts model and Baxter’s hard-square lat-
that, depending on the type or strength of the constraint, ce gas are exactly known, and those of the other systems

continuous transition may become Fisher renormalized, 'have been determined with a precision in the sixth or seventh

main unchanged, or become first order. The special pOIn(tifcimal lace. In contrast, for the three-dimensional BC
where the transition remains unchanged was referred to as P ’ A B o
model, the error estimation of the tricritical point is so far

special “tricritical” point[11]. ; i )

pm the context ofpthe F[QG]theory, Imry and co-workts] restricted to the_ fourth demmal _placté4]. Third, Baxter's
applied thee-expansion technique to a generalized LandauNard-square lattice ggs7,1§ is in the same universality
Ginzburg-Wilson Hamiltonian. The effect of the constraint is ¢lass as the tricritical Blume-Capel model, so that the two
accounted for by an additional parameter, and they foundnodels can serve for independent tests. - _

four distinct fixed points: the tricritical IsingT1), the critical The outline of the remaining part of this paper is as fol-
Ising (CI), the renormalizedtricritical Ising (RTI), and the lows. Section Il reviews the models, the sampled quantities,
renormalizedcritical Ising (RCI) fixed point. The critical ex- and the geometric cluster algorithm, which plays an impor-
ponents at these fixed points are relatedags,=—ac/(1  tantrole in the present investigation. In Sec. I, we apply the
—ag) and agr=—aq/(1-aq), in agreement with Eq(2). Fisher renormalization mechanism in the generalized context
For the spatial dimensionality=3, Tl and RTI correspond of tricritical scaling. Numerical results are presented in Sec.
to Gaussian and spherical fixed points, respectiVay. IV, and a brief discussion is given in Sec. V.

Thus, at the fixed points Tl and RTI, the critical index is

equal to ar=1/2 and ar=-1, respectively. For the

3He—“*He mixtures, if one assumes that constrained tricriti- Il. MODELS, SIMULATIONS, AND SAMPLED
cal behavior is governed by the fixed point RTI, the theoret- QUANTITIES
ical predictionagr=-1 is in good agreement with the ex- A. Models

perimental resule=-0.9(1) [2].
However, to our knowledge, numerical tests of these theo- , | N® Blume-Capel modeh the development of the theory

ries are still scarce; in particular, the finite-size behavior OfOf t(rjlclrlﬂcal phepdorgeﬂa,fthe jp'.n'l r_?rc:del kgo:/vn as tr&e BC
constrained critical systems has only attracted limited atten™d€l has provided the foundation. The model was indepen-

tion. Thus, very recently, we perform¢tl4] a Monte Carlo dently introduced by Blum¢15] and Capel[16]. The re-

investigation of the constrained three-dimensional Blumeduced Hamiltonian reads
HIgT=-KX s5+DX st (s=0,+1). (3

Capel (BC) model [15,16. The phase diagram of the BC

model is analogous to that of the dilu¥Y model, and in i "

three dimensions, the two tricritical models share a common

set of critical exponents. At the tricritical point, the con- This Hamiltonian is identical to Eq1) when the vector or-
strained specific heat reaches a finite value with the indeger parametes is replaced by a scala. Further, in three
«=-0.993) [14], in agreement with the experimental data dimensions, the phase diagram of [E3).is analogous to that
[2] and the RG calculations in Ref13]. Nevertheless, the Of the dilute XY model (1). The universal tricritical expo-
exponent of the power law describing the decay of the corhents of the two-dimensional BC mod@) are known from
relation function at tricriticality remains unchanged under theexact solutiond17,18; they can also be calculated in the
constraint. In this sense, the constraint does not lead to @ontext of the Coulomb gas theof0,21 and are included
change of the universality class. In REf4], we also gener- in the predictions of conformal field theory22,23. The
alized Fisher's approadl6] for application totricritical sys- leading and subleading thermal exponents yae9/5 and
tems. For the tricritical BC model in three dimensions, thisyrz=4/5, and themagnetic ones arg;=77/40 andyy,
mechanism also predicts that the unconstrained and cor=9/8, respectively. Using a sparse transfer-matrix technique
strained indices are related as°=-a'"/(1-a"")=-1, in  and the finite-size scaling, we have locafad] the tricritical
agreement with the RG calculations in REE3]. Here, the Point of the square-lattice BC model #$=1.643 175 91)
superscripts “co” and “un” are for constrained and uncon-2nd D;=3.230 179 72); the tricritical vacancy density ip,
strained systems, respectively. However, for a general tric=0.454 950 62). These results are based on the requirement
ritical system, it was predictefll4] that, in addition to the that both the leading magnetic and energy-energy correlation
relation a®°=-a""/(1-a""), other cases can occur, depend-lengths simultaneously reach their theoretical values. They
ing on the relative magnitude of the leading and subleadinge consistent with the existing estimatg=1.642) and D,
thermal exponentyg,; andy;, and the spatial dimensionality =3.224) [25], and the precision is considered to be sufficient
d. in the present investigation.
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Baxter's hard-square modelVe also investigate Baxter’s H=-K> ¢ +D> o, (6=0,1). (6)
tricritical hard-square lattice gd47,18, which belongs to e ” '
the same universality class as the tricritical BC model. The

Hamiltonian of a general lattice gas on the square lattice caRO" D ——, the vacancies are excluded, and the random-
be written as cluster representation describes the “pure” bond-percolation

problem. Thus, the random-cluster representation of(&q.
corresponds with a mixed-site—bond-percolation model. Be-
H=-KX 0i0,-J3 2 oy +DX o, (4)  cause of the attraction between the nonvacancies, this dilute
(nny {nnn} K model is different from the conventional site—bond-
percolation mode[27], in which the vacancies are randomly
whereo=0, 1 represents the absence and presence of a padistributed over the lattice; i.e., different sites anecorre-
ticle, respectively. The sum{an) and{nnr} are over nearest- |ated. Nevertheless, in general, one expects that the dilute
neighbor and second-nearest-neighbor sites, respectively. FQr— 1 Potts model, described by E@), is still in the perco-
the hard-square lattice gas, it is required tkat—o0; i.e.,  lation universality class, and the question arises if it has a
the particles have a “hard”-core so that nearest-neighbor sitesgcritical point. The answer follows after substituting the re-
cannot be occupiesimultaneouslyfor this case, the tricriti- lation o=(s+1)/2 in Eg. (6). Apart from a constant, the
cal point is exactly known17,18: Jt:In(3+\s’§) and Dy Hamiltonian (6) reduces to the Ising model in a magnetic
=In[8(1+\5)]. The corresponding vacancy densitypis:(5  field:

+15)/10.
=—k® o — =

The tricritical q=3 Potts modelJust as the tricritical BC H=-K mzm SSj sz: S (s=21), ()
model, the tricriticalg=3 Potts mode[19] can be obtained
by including vacancies in the “puref=3 Potts model. The with the relations
Hamiltonian of such a dilute-state Potts model then reads KD =K/4 H=-D/2+zK/4, )

wherez is the lattice coordination number. Thus, the Ising
H=-K2, 1-6,0—-D2 6 =0,1,...9), » . . S
m% 5,01~ 0,0 2,:’ oo (o el critical point at Ké') and H=0 appears in the dilutg— 1

Potts model6) at Kt:4K(C') and DtZZZK(CI). Since the critical
singularity is not percolation like, this point qualifies as the
) o . ] tricritical point of theq— 1 Potts model. The spin-up—down
where the lattice site is occupied by a Potts variable symmetry of the critical Ising model yields the vacancy den-
=1,... g or by a vacancyr=0. Nonzero coupling& occur  sjty of the dilute Potts modegl,=1/2 attricriticality. Relation
only between nonzero Potts variables. fger 4, the phase (g) shows that the temperaturelike parametérandD con-
diagram in the(K, D) plane resembles that of the BC model: yjpyte toK" andH in the Ising model. Therefore, the lead-
a tricritical point occurs between the continuous and the firstmg and subleading thermal exponents of the two-
order line of transitions. At the tricritical poirK;,D), the  dimensional tricriticalq=1 Potts model simply follow as
critical exponents ar¢20-23 y,=12/7, y,,=4/7, andyy; 0 0

=40/21. Also for this model we used the sparse transfer- Yu=Yp =15/8, yp=y; =1. 9

matrix method to locate[24] the tricritical point: Ky  The |eading magnetic exponent of the two-dimensional tric-
=1.649 9185), D;=3.152 17810), with a corresponding va- itical =1 Potts model is,;=187/96[26].
cancy densityp;=0.345 725).

The dilute 4 Potts modelThe q=4 Potts model is a B. Monte Carlo methods

marginal cas¢19], since the subleading leading thermal ex-  The Hamiltonian for theg-state Potts model remains in-
ponent satisfieg;,=0. The leading thermal and magnetic variant under a global permutation of two of tigePotts
exponents ar¢21,22 y,;=3/2 andy,;=15/8, respectively. states. Thus, one can apply the conventional Swendsen-Wang
The phase transition of a pure Potts model wjth 4 is of  [28] and Wolff[29] cluster algorithms to simulate these mod-
the first-order typg17]. We investigate the dilutgq=4 Potts  e|s. However, for most tricritical models defined abdes-
model at the point where the leading and subleading thermalept for the tricriticalq=1 Potts mode| these cluster algo-
fields vanish. We have locatd¢@4] this “fixed” point ask; rithms are apparently not suitable or sufficient, since they do
=1.457901), D;=2.478442), and the corresponding va- not operate on the vacancies. For unconstrained systems, a
cancy density i$;=0.212 072). simple solution is to combine these conventional algorithms

The tricritical g=1 Potts model.It has already been and the Metropolis method. However, the problem arises as
known for a long time[26] that the tricriticalg=1 Potts to what sort of Monte Carlo algorithm is appropriate for
model is equivalent to the critical Ising model. The Ising constrained systems. In principle, one can apply a Kawasaki-
clusters of the critical Ising model, a group of spins con-like Monte Carlo method30], which is particle conserving.
nected by bonds between equal nearest-neighbor spins, avafortunately, this method suffers from a serious critical
described by the magnetic exponent of the tricritigedl  slowing down, and thus simulations are restricted to small
Potts model. Here, we shall illustrate this equivalence, startsystem sizes. This may be one of the reasons why the num-
ing from the diluteg-state Potts mode(5), which, for the  ber of numerical investigations in this subject is rather lim-
caseq=1, simplifies as ited.

(5
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In the present work, we make use of the so-called geoand the energy density It is thus justified to investigate the
metric cluster methodi31-33, which is developed on the influence of the constraint on these spatial fluctuations. For
basis of spatial symmetries, such as invariance under thihis purpose, we define a set of quantities on the basis of
spatial inversion and rotation operations. This algorithmspatial inhomogeneities of the magnetization, the energy, and
moves groups of spins and particles or vacancies over thie vacancy density. Consider the Fourier expansion of the
lattice in accordance with the Boltzmann distribution, so thatrder parametem(x,y) for a system of sizé.:
the total numbers of spins and particles and vacancies are
conserved. It has been sho{B1-33 for several models that 1 (t )
the percolation threshold of the geometric clusters coincides My, = sz dx dy ntx,y)exp 2mi(xk+yl)/L].  (11)
with the phase transitions, so that the critical slowing down
is effectively suppressed.

0

o . S Obviously, my o is just the global magnetization density,
Then, the constraint is fully realized by a combination Ofand the magnetic susceptibility b&ILZ<m2>=L2<TT%,o>; the

the Wolff and geometric cluster methods, of which the b (k£0 or| £0) s th tial inh
former flips between variables in different Potts states. A'UMP€Mk) or represents the spatial Innomoge-
eity of m(x,y). Since we are especially interested in fluc-

particular feature of such constrained simulations is that the{] ) . L
hardly suffer from a critical slowing down even near tricriti- uations on the largest scales, we define a susceptibilitylike
cality quantity xs in terms ofmy for the smallest wave numbers:

—12 —1 2/
C. Sampled quantities xs=L <m_1’oml’0+ mo’_lmo’ﬁ =L <m$>' (12

Conventional quantitieuring Monte Carlo simulations, Where, for later convenience, a quantity has been intro-
we sampled several quantities, including the moments of thguced. We shall refer to as the structure factor of the
order parameter, the energy density, etc. The magnetic sususceptibilityy.
ceptibility is then obtained from the fluctuations of the order ~Analogously, we sampled the structure factor of the spe-
parametem as y=L%n?). For the BC model1), mis just  cific heatC asCs=LXe_; 1 o*€ 16,1 =LX€5) and that of
the magnetization density; for Baxter’s hard-square latticéhe compressibilityP as Ps=L%p_; go1 o+ po,-100 2 =L%Xp2),
gas,mis the difference of the vacancy densities on the twowhereg,, and py, are obtained from Fourier expansions of
sublattices of the square lattice—i.en=p™'-p@; and for  the energy and the vacancy densix,y) and p(x,y), re-
the tricritical =3 and 4 state Potts models, we defimé  spectively. On this basis, we sampled the dimensionless ra-
:%Eiﬂ(pi—pj)z wherep; is the density of théth Potts state. tios
An energylike quantitye was sampled as nearest-neighbor
correlations for the BC and thg@=1, 3, and 4 state Potts (md)? (€2 (p2?
models with vacancies. For Baxter’s hard-square lattice gas, Qsm= ()’ se™ e’ Qs = oY
the nearest-neighbor sites cannot be occupied simulta- ° s
neously, so that we sampledas next-nearest-neighbor cor-  The physical meaning of these structure factors can be
relations. On this basis, a specific-heat-like quantity is degleaned from a comparison with the conventional quantities.
fined as C=L?((e?)—(e)?), which is proportional to the For instance, botly and xs represent fluctuation strengths of
second derivative of the reduced energy with respect to th#1e order parameten and can be expressed in terms of a
coupling constank. Moreover, we sampled energy-energy summation involving the magnetic correlation function,
correlationsge(r) =(eye,) —(€)2. For a lattice with linear sys- v_vhose scaling behavior is described by the corrglation func-
tem sizel, the distancer was taken as the half-diagonal tion exponentsy and v». Thus, we expect that, in uncon-
distance—i.e.r=+2L/2. Since the vacancy densifyalso ~ Strained systems, the structure factgesCs, andPs display
behaves energy like, we define a compressibilitylike quantitfhe same scaling behavior gsC, andP, respectively. How-
P=L2(p?—(p)d), which is expected to behave analogously€Vver. as we shall see, there are interesting differences in con-
asC. strained systems.

In Monte Carlo studies of critical phenomena, the univer-

sal Binder rat|0[34] plays a useful role. ThUS, we Sampled IIl. EINITE-SIZE SCALING BEHAVIOR IN CONSTRAINED

(13

several dimensionless quantities as SYSTEMS
2\2 2y2
Q= (m?)* Q.= ((e-&)) Q,= (p=p)?* A finite-size analysis of constrained phenomena precisely
T T (e-9h P ((p-pY] at tricriticality has recently been reportgt]. This analysis

(10) follows the basic idea of the Fisher renormalization mecha-
o . nism, which has been formulated foritical systemg6]. In
wheree=(e) and p={p). this section, we shall briefly review and moreover generalize
Structure factors.Apart from the singular behavior of the procedures in Reff14], such that we can also account for

physical observables, a second-order phase transition is getire constrained scaling behavior due to deviations from the
erally accompanied by long-range correlations in time andricritical vacancy density.
space, and thus large-scale spatial fluctuations exist for the As a first step, we express the finite-size scaling formula
physical observables, such as the magnetization density of the reduced free energy near tricriticality as
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f(ty,to, L) = L79fg(LY0ty, LY2ty, 1) + fo(ty,ty),  (14) 4
wheret, andt, are the leading and subleading thermal fields, disordered//'
respectively. In the language of the BC modeglandt, are = ="
analytic functions of the coupling constantand the chemi- q t
’, ordere:

cal potentialD. The symbolsfs and f, are the singular and

analytical parts of the free energy, respectively. The expecta-

tion value of vacancy densit{p) follows by differentiation
as

of
—(plty,t)) = (9_D = alLytl_df(Sl’O)(tlLytl,t2|_y'[2) + aZLYtz‘df(SOrl)

X (ty LY, 1Y) + @ FHO (b, 1) + anf OV (ty, 1),
(15
wherea,;=dt;/JD anda,=dt,/JD are constants. The super-
scripts(i, j) represent differentiations with respect tg and
j differentiations tot,. Linearization at the tricritical point
yields
- 8p = b L, + b,LYute dt, + bat, + bty + o+,
(16)

where by, b,, bs, and b, are constants andp={p(t;,t,))

—-{p(0,0)) is the deviation of the vacancy density from its
tricritical value. The constraint that the vacancy density b

fixed at the tricritical value yield$p=0 in Eg. (16). As a
consequence, the thermal fieldsandt, are related, but in a
way which still depends on which terms in the right-han
side of Eq.(16) dominate. We consider the case of lalge
and then distinguish three cases:

(i) For 2y;—-d>0 and y;+y,—-d>0, one hasLYut;
o« LYet,—ie., t,>1; and K-K,=t,—so that the leading

thermal exponent of the constrained systems is equal to t

subleading exponer.,.
(i) For 2yy,—d>0 but y4+y,—d<0, one haslLYut;

o« L9Vut,, The leading thermal exponent is thus renormalized

asyy — d-yu. Again, we have,>t; andK-K;=t,.

FIG. 1. lllustration of the application of the Fisher renormaliza-
tion mechanism to tricritical systems. The tricritical poiKg, Dy) is
denoted as the black circle, and the solid single and double lines
represent the critical and first-order-transition lines, respectively.
The variableg, andt, are the leading and subleading thermal fields
at the tricritical point, respectively. The constraint that the vacancy
densityp is fixed at the tricritical valug, is described by the dashed
line, part of which coincides with the first-order transition line. As a
consequence of the constraint, the scaling figldsdt, are related,
and this relation is singular at tricriticality.

f(ty,tp,L) = L9 (= by'L9Y(8p + byty)

= (bo/by LYty Y21y, 1) + f4(0,tp),  (18)
which can be written more simply as
flty, to L) = L g(L9Vuty, Lety) + £,(0,tp),  (19)

where t; = dp+b,t,. This means that the deviatiofp—p;)

efrom the tricritical density combines witt) to act as a scal-

ing field with a renormalization exponemt-y,,; i.e., the
finite-size effect of this linear combination is multiplied by

d Loy,

In the constrained system, we wish to express the con-
strained free energy iK andp instead oft, andp. In cases
(i) and(ii), the constraint equatiof16) shows that; <t, for
largeL. Sincet, andt, are written as linear combinations of

hlé and D, we may writeK-K;=t, apart from corrections

with negative powers of. Thus we have

t=dp+aK-K), t=K-K,. (20)

Then, the scaling behavior of constrained quantities can

(iii) For 2y,;—d<0—i.e., the unconstrained specific heat be obtained from differentiations of E(¢L9) with respect to

does not diverge at tricriticality+r is approximately propor-
tional tot, and no exponent renormalization occurs.

appropriate scaling fields.
For casqliii ), no exponent renormalization occurs afd

Therefore, for a tricritical system with a divergent specific approaches a linear combinationtpfindt,; i.e., the distance

heat(2y,;—d>0), the leading thermal exponew is renor-

p—p; behaves in leading order as the scaling figldandt,,

malized tod-y,, under the constraint, while the subleading independent ot.. .
one remains unchanged. Thus, the finite-size scaling relation The essential element of the above procedure is the solu-

for the difference ofK to the tricritical point is(K-K,)
— (K=K L%V +a5(K—K,)LY12, with a5 a constant.

tion of the constraint equatiofp=const in terms of a rela-
tion betweenK andD. In the parameter spade,,t,), this

Next, we consider the case that the fixed vacancy densit§olution is sketched in Fig. 1. The path of the constrained

p differs slightly from the tricritical valuep—i.e., dp=p
-p:# 0 in Eq.(16). We first consider casd$) and (ii)—i.e.,
2y,1—d>0. We rewrite Eq(16) as

Lut; = — by {(8p + byt L¥Ya + byt LY+ -], (17)
where we have omitted the term with amplitudg which
contributes a smaller power df than the left-hand side.

After substitution in Eq(14), neglecting less relevant terms,
we obtain

system, the dashed line, is singular at tricriticality, and for
the case $#,—d>0, renormalization of critical exponents
occurs.

As mentioned earlier, in addition to uniform fluctuations,
a second-order phase transition is also accompanied by inho-
mogeneous large-scale spatial fluctuations. Without the con-
straint, these two types of fluctuations display the same scal-
ing behavior. However, their behavior becomes qualitatively
different in constrained systems when the uniform fluctua-
tions are sufficiently strongly suppressed by the constraint. A
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160

good test for such a difference is to compare the critical
behavior of the structure factogg, C,, andPg with x, C, and
P, respectively. According to Eq19), the exponents de- e
scribing the behavior o€ and P are modified as long as 1201 o
2y,1—d>0. In contrast, since the constraint does not lead to
a change of the universality class, one may expect that the

leading finite-size scaling behavior 6f and P4 remains un- 80T
changed at tricriticality. This will be confirmed by our nu- 60
merical data later. 10l

We conclude this section by pointing out the following
20

implicit assumption. In the derivation of E(L6), we require
that the expectation valug) of the vacancy density be a 0
constant, while, in fact, we should require thattself is a

150 200 250 300

constant. Fot. — <0, no difference exists betwedp) andp.
In a finite system, howevep need not be equal tp); i.e.,
fluctuations of the vacancy density are allowed evep)fis

L8/5

FIG. 2. Specific-heat-like quantities in the unconstrained BC
model at tricriticality vsL®5 These quantities includ€/10(+),

a constant. As mentioned earlier, the Monte Carlo simula2p(x), C(0), and 1PA). The approximate linearity of the data
tions to be performed in this work conserve the number ofilustrates that the leading behavior of these quantities is governed

vacancies, which leads to a “stronger” constraint tijan

=(cons}. Thus, the application of the Fisher renormalization
mechanism in this paper used the assumption that suppress-

ing the fluctuations op about({p) does not lead to a quali-

tative change in the leading scaling behavior of the con-

strained system.

IV. RESULTS

A. Tricritical q=1 Potts model

by the exponent®,-2, with y;;=9/5.

B. Tricritical Blume-Capel model
1. Unconstrained systems

For the unconstrained tricritical systems in the present
paper, the nature of the critical behavior is now well estab-
lished[20,21]. The finite-size expression of the reduced free
energy is given by Eq(14), and the scaling behavior of the
aforementioned conventional quantities is obtained by differ-

The tricritical =1 Potts model is particularly suitable to €ntiating Eq.(14) with respect to appropriate scaling fields.
illustrate the Fisher renormalization mechanism for con-These quantities include the energy denséy the specific
strained tricritical phenomena. The equivalence of this modeneatC, the magnetic susceptibility, the energy-energy cor-
with the Ising model in a magnetic field, as mentioned inrelation functiong(r=L/+2), etc. Precisely at tricriticality,
Sec. I, makes it possible to use the known properties of thene has

latter model, and thus there is no obvious need for simula-
tions. The energy density and the specific heat in the two

models are related as
(e) o« (e + 2(m"), (21)

where the superscrig) is for the Ising model. Thus, the
leading behavior of the Potts specific h€ais just that of the
Ising magnetic susceptibility!". This illustrates the fact that
the leadingy=1 Potts tricritical thermal exponewy; is equal
to the magnetic exponeryﬂ) of the Ising model. However,
the leading scaling behavior ¢é) of the Potts mode(6) is
“accidentally” governed by the exponey{f), the subleading
Potts thermal exponemt,. This is due to the symmetry be-
tween plus and minus Ising spins.

The diluteg=1 Potts model with its vacancy density
fixed at p;=1/2 is equivalent to an Ising model with zero
magnetization. Thus, the constrained susceptibjity van-
ishes in Eq(21), and the Potts and Ising specific he@tand

CoCh+ 4X(|),

(e(L))=ey+e LY 2+glYe 24 ... |
C(L) = cp+ ¢ LY 2+ g LYtz 2 4 gl Y224 ...
P(L) « C(L),
X(L) = xo+ xoL@m 4+ - |

ge(L) = g L4 4 g LY d 4 oo (22)

The constantsg,, ¢y, andyy, arise from the analytic part of
the free energy density. As discussed above, we expect that
the structure factor€, P, andy behave in a similar way as
the physical quantitie€, P, andy, respectively.

For a comparison with constrained phenomena investi-
gated later, we simulated the tricritical BC model on the
square lattice precisely at the tricritical poifR4] K;
=1.64317591) and D;=3.230 179 72). The Monte Carlo

C become identical. Further, the constraint on the Isingsimulations used a combination of Metropolis and Wolff
model is of the magnetic type, so that the scaling behavior o§teps, which allows fluctuations of the magnetization as well
C is not qualitatively influenced. Thus, one can concludeas the density of the vacancies. Periodic boundary conditions
that, under the constraint, the Potts specific @as gov-  were applied, and the system sizes were taken in the range
erned by the second thermal expongpt—i.e., the Ising 4<| <32. The Monte Carlo data fo€, P, C,, and P are
thermal exponenyi'):l. This is as predicted in Sec. Il for shown versud ®® in Fig. 2. The approximate linearity of
the case %,—-d>0, yy +Y;,—d>0. these data lines indicates that all these quantities are specific
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0.46 —— - - - - - - For a sampled quantitd, its tricritical valueA, is then ob-
0.44 tained by a linear interpolation a&=xA,+(1-x)A_, with
) x=V;—V_; the statistical error margin o is estimated as
042 t . SA=(x8A,)?+[(1-x)6A_]%. The data for the constrained
specific heaC and the energy densitg) are shown in Figs.

< 04r 4 and 5. In comparison with Figs. 2 and 3, these figures
0.38 | . indicate that the scaling behavior & and (e) is indeed
A‘m‘ modified by the constraint. In particular, the constrained spe-
0.36 “‘u“ | cific heatC reaches only a finite value instead of being di-
034 | ‘A | vergent forL—oo. The exponents used for the horizontal
axes in Figs. 4 and 5 are those predicted in Sec. Ill. For the
0.32 ' tricritical BC model in two dimensions, the Fisher mecha-

0 01 02 03 04 05 06 07 08

L8 nism predicts that the leading thermal singularity in con-

strained system is determined by the subleading exponent
Vio, because the renormalized exponentyg=1/5 is
smaller thany,,=4/5. Thus, one obtains the leading finite-
size behavior(e)o« Y2 2= 765 gnd CocL D2 2="25 jn
agreement with Figs. 4 and 5, respectively. By differentiating
Eq. (19 with respect to the thermal fields, and 7,, the
finite-size dependence & and(e) follows as

FIG. 3. Vacancy density of the unconstrained BC model at
tricriticality vs LYn=2=L"15_ As expected, the vacancy densitys
an energylike quantity.

heat like; the scaling behavior is described by E2) with

the exponenty;;=9/5. Further, we observed thayo

oc.LZth.‘Z: L3720 (not shown. The data for the vacancy c_Jen— C=cy+al P22+ gyl VeV + gl 2 Mt - |

sity p is shown versusY12=L"%5in Fig. 3, where we in-

clude theL —oo ftricritical value p,=0.454 950 €2), taken > _

from Ref.[24]. (€) =€+ by L'+ byl Mk oo, (24)
For the universal ratios d_efined in Sec. Il inclgdi@], where the constants, ande, are equal to those in EG22).

Qe Qpr Qsm Qse andQs,, we fitted the data according to the The (g) and C data were fitted by Eq24), with y,, fixed at

least-squares criterion by 9/5. In order to obtain a satisfactory fit, the data for small

Q(L) = Q+byLYi + b,L ¥, (23)  system sizes <8 were discarded. We obtain,=0.7984)

and 0.8084) from the fit of C and(e), respectively. These

results are in good agreement with the exact vaige4/5.
The gq(r) data forr=y2L/2 at tricriticality are shown in

where the terms with amplitudds andb, account for cor-
rections with the irrelevant scaling exponent—-1 for the
g=2 Potts tricritical universality class in two dimensions Fig. 6. The approximate linearity indicates that the scaling

[17.’18’2|1’22 Thet r?SUItSI’ shown in Lable L 'n(.j('jcat? thla;[ the behavior ofg, is still governed by the leading thermal expo-
universal asymptotic values @, and Q. are identical to nent yy—i.e.. goor L¥a-4= 25 as described by Eq22).

Lhc;ﬁe ofQ, dandQSP’ respefﬂvely. This is as expected, SINC€This confirms that, as expected, the power law describing the
oth{e) andp are energy like. spatial correlations is not affected by the constraint, although
the amplitude become negative. For an illustration of the
influence of the constraint on inhomogeneous fluctuations,
Simulations of the constrained BC model used a combiwe sampled the structure fact€sandP, which display the
nation of Wolff and geometric cluster steps, as discussedame scaling behavior @& and P in the unconstrained sys-
earlier. Periodic boundary conditions were used, and the sysems, as shown in Fig. 2. The constrained dataCfoand P
tem sizes were taken in the ranges6 <720. For each sys- are shown in Fig. 7. In contrast to the conventional quantities
tem size, about & 10’ samples were taken. C andP, the leading behavior of the tricritical structure fac-
Constrained behavior at the tricritical poinfthe tricriti-  tors Cg and Pg remains the sameas in the unconstrained
cal point was taken from Ref24] as K;=1.64317591), systems. The numerical data were fitted by &) with the
p:=0.454 950 62). For a finite systenk, however, the total exponenty,, fixed at 4/5. After a cutoff for small systems
number of vacancied/,=L?p,, is generally not an integer. In sizesL<8, we obtainy,;=1.7992) and 1.798) from the
that case, the actual simulations were performed_at[V,] fits for C; and Py, respectively. These results are in good
and V,=[V,+1], where bracket$] denote the integer part. agreement with the exact valyg=9/5.

2. Constrained systems

TABLE I. Fit results for the dimensionless quantities of the constrai@mhstr) and the unconstrained
(Uncon) Blume-Capel model.

Quantity Qm Qe Qp Qsm Qse Qs
Uncon. 0.662(b) 0.5962) 0.59712) 0.43495) 0.472@8) 0.470%8)
Constr. 0.9821) 0.33312) — 0.812225) 0.8481@6) 0.848046)
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24 ditions, the aspect ratios, etc. A particular feature in Table | is
22¢ that the constrained ratiQ.=0.33312) = 1/3. This indicates

2+ \.‘. that the fluctuations of the energy density resemble the nor-
181 . mal (Gaussiandistribution. As reflected by the fact that the
16k ‘-l‘ | specific heaC remains finite in constrained systems, this is

O 14b "l.l‘! | because singularities of energy-related quantit@es are strongly

! u, ] suppressed so that the “backgrourittie analytical part of

) e, the free energyplays an enhanced role.

Ly e . 1 Constrained behavior near the tricritical pointn addi-
0.8 . 1 tion to the tricritical point, the Fisher renormalization mecha-
0.6 Ot nism also predicts the scaling behavior as a function of the

distancesK-K; and p—p;. In this case, the dimensionless
ratios serve a good choice for such investigations. Qhe
data atkK=K, are partly shown in Fig. 9 as a function the
vacancy density. They indicate that the expongnof the

FIG. 4. Specific hea€ of the constrained BC model at tricriti- deviation of the vacancy density-p, is much smaller than
cality vs L¥272=."?/5 The approximate linearity at the left-hand 1—ie., y,<1—in agreement Witht the prediction by Eq
side implies thaC is governed by the subleading thermal exponent(lg) ' T.hepQ data were fitted by '

. m

Vio, s predicted by the Fisher renormalization.

0.4 L L L L 1 L L L
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
L—2/5

4

As an illustration of the influence that the energylike con-  Qm(p.L) = Qm+ 2 ap = pp LK@V + by LY + b,L ¥
straint has on magnetic quantities, we sampled the quantities k=1
x and .. The data are shown in Fig. 8, where the exponent +Cy(p— pIL2 Y+ cy(p — p)?L2 Va4 - oo
37/20 used for the horizontal scale is equal yg;2 2 with (25)
Yn1=77/40[20-22. Thus, the constraint does not change the
leading scaling behavior of magnetic quantities. This is apwhere the term witrc, describes the “mixed” effect of the
parently related to the fact that the chemical poteridiathe  |eading irrelevant field and the scaling fietg in Eq. (19).
conjugate parameter of the vacancy denpitis not directly  The term withc, arises from the nonlinear dependencerpf
coupled to the magnetic field. on the distance—p,. The irrelevant exponent was fixed at
The data for the universal ratios, includif@y,, Q. Q)  y;=-1. Discarding the data for for small system sides

Qsm Qse andQ,, were also fitted by E(23). We assume <12, we obtainy,=1.7965), in agreement with the exact
that, under the constraint, finite-size corrections still mainlyyajyey,,=9/5.

arise from the irrelevant field. After a cutoff for small system  As shown earlier, precisely at the tricritical point, the

sizesL <10, satisfactory fits can be obtained. The results ar¢eading scaling behavior of the structure factors is not renor-

shown in Table I, where the quoted error margins are tWanalized under the constraint. However, we argue here that
StatIStlcal Standard deV|at|0nS. ThUS, although the dlmenSIOQhe Constrained Sca”ng behavior Of these quantities as a func-
less ratios are universal, they assume different values in URion of the distance to the tricritical point is still governed by

constrained and constrained systems. The reason is that thesg. (19). Thus, the leading finite-size scaling 6{p,K,L)
ratios depend on the spatial profile of correlation functionsgngcp,K,L) can be expressed as

Here the constraint plays a similar role as the boundary con-

0= T
176 \.l T T T T T T ‘\\\
"B,
1.74 + ™=, _ 021
“. E@%ﬂﬂﬂ
1.72 + N ] 04| P,
1\\[ X EE-B
1.7+ 1 =y
A . o8 -0.6 | =
v 1.68 - . J “m
=N
1.66 | : 08¢ e
=N
1.64 ] ot ~e ]
1.62 g S
1.6 70 005 0.1 015 02 025 03 035 04 045

0 001 002 003 004 0.05 0.06
L—6/5

125
FIG. 6. Energy-energy correlationgg(r) of the constrained BC
FIG. 5. Energy densitye) of the constrained BC model at tric- model at tricriticality vsL?u~4=1"%*, The distance was taken as
riticality vs LY22=L~%/5 The approximate linearity for lardeis in L/y2, the half-diagonal system size. The approximate linearity in-
agreement with the Fisher renormalization. dicates that the critical exponent fgg(r) is not renormalized.
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FIG. 7. Structure factorsCs/10(A) and Py <), of the con-
strained BC model at tricriticality va.?1=2=18/5, The approximate
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0.986
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OE 0.982 |
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0.98 |
0.979 |
0.978 |
0.977

0455 046 0.465

P

0445 045 047

FIG. 9. Dimensionless rati®,, of the constrained BC model
with K=K, vs vacancy densitg. The system sizes ate= 16(+), 24

linearity suggests that the critical exponents for these structure fad<), 32 (1), 48 (O), 64 (A), and 96(¢). The small finite-size

tors are not renormalized.
C(’T]_, T2, L) = C(Tl, 7'2) + L2yt2_zc(7'1|_2_ytl, 7-2|_yt2) y
CS( T1, T2, L) = Ca( T1, 7'2) + LZyU'_ZCS( T]_Lz_ytl, 7-2|_Yt2) ,
(26)
where r,=(p—p;) +a(K-K;) and n,=(K-K;) act as scaling
fields. The term(m, ) andc,(7, ) arise from the ana-

lytical background. For the case=K;,, Taylor expansions of
Eq. (26) yield the behavior ofc4(p,L) as

Ca(p,L) =Cao + Car(p = pp) + Canlp = p)? + Lzytl‘z[do

+ 2 aylp — pHLC by LY+ bz'—zy‘] - (27)
k

We fitted C, data forK=K; by Eq. (27). After a cutoff for
small system sizeg <10, we obtain the leading thermal
exponenty;;=1.7938) = 9/5.

140000

120000
100000 | A
80000 | A

60000 - K °
40000 | "‘“,

20000 o* o

o

0 60000

120000 180000

13720
FIG. 8. Susceptibilitylike quantitieg/(dJ) and ysx 10(A) of
the constrained BC model at tricriticality Us¥m=2=[3720 The

dependence of the slopes of these curves indicates that the critical
exponent governing the scaling behavior@f, as a function ofp
—p¢ Is much smaller than 1.

For an infinite system with the coupling constattK;,,
the specific-heat-like quantitieS and C; behave asCx (p
-p) % and Csx (p—p)~*», respectively. The exponents,
and a5, can be obtained by regardigas a scaling factor,
which satisfies(p—p)L?Y11=1. From Eq.(26), one simply
has @,=(2y-d)/(d-yw)=-2 and as,=(2yy—d)/(d=yy)
=8. Similarly, for the cas@=p;, the specific heaC and the
structure factoiCg behaveC o (K—K;)™ and Cgoc (K—K,)™*s
in an infinite system, respectively. Following the same pro-
cedure, one can obtaia=(2y,,—d)/y,=-1 and as=(2yy
—d)/yp=2.

As an illustration of the renormalization exponents due to
the difference oK to the tricritical point, theQg,, data for
p=p; are partly shown in Fig. 10 as a functionkf We fitted
theseQs,, data by

0.86
0.85
0.84 |
0.83 |

2 082f
S os1}
0.8}
0.79 |
0.78 |

0.77
1.62

X oReOm X +
SORSRA

1.64 1.65 1.66

K

1.63 1.67

FIG. 10. Dimensionless ratiQg, of the constrained tricritical
BC model at a fixed tricritical vacancy densipy=p; vs coupling

approximate linearities suggest that the constraint does not qualit@onstantk. The data pointst-, X, [, O, A, ¢, and * represent
tively influence the leading scaling behavior of magnetic quantitiesL=24, 32, 40, 48, 56, 64, and 80, respectively.
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0.05 | - 48¢t =
@} ‘l\ L \‘El\
0.04 l‘_.\ ) 4.6 “a,
e, 441
003} . 421 “a,
l . g,
0.02t LI 4r L,
0.01 L L L L L L L ~ . J
0 005 01 0.5 02 025 03 035 04 361
L5 34 :

0 002 004 006 008 0.1 012 014

FIG. 11. Constrained specific he@t of Baxter's hard-square LY

lattice gas at tricriticality vd?272=1"2/5 in agreement with the

prediction of the Fisher renormalization FIG. 12. Constrained specific he@tof the q=3 Potts model at

tricriticality vs L%272=1757 in agreement with the prediction of

4 the Fisher renormalization.

— — KX kv, Yi 2y
QunfK,L) = Qom+ Elalk(K KoL+ by L+ byl =0.345 725). The system sizes were chosen as 20 values in
~ — 2 Yo the range 6L <280. The Monte Carlo data fa€ and(e)
*Co(K— KL+ cp(K - KL+ - are shown in Figs. 12 and 13, respectively. Again, the tric-

(28) ritical specific heaC is suppressed and remains finite under
the constraint. These figures confirm that the leading behav-
ior of C and(e) is governed by the exponents 2y2and
-Yu, respectively, as predicted by E@4). For a quantitative
confirmation, theC data were fitted by Eq(24). First, we
fixed y, at 12/7[20-22. After discarding the data for small
system sizek <10, we obtairy;,=0.5723) =4/7. Next, we

Within the same universality class of the tricritical BC fixed y;, at 4/7 and obtairy;=1.7142)=12/7.
model, we also investigate Baxter’s hard-square lattice gas The scaling behavior of magnetic quantities and the struc-
[17,18, which is described by Ed4). Constrained simula- ture factors also remains unchanged under the constraint, as
tions used the geometric cluster algorithm only and tookexpected. As an illustration, tH&; data are shown in Fig. 14,
place at the exactly known tricritical poidf=In(3+y5) and indicating that at tricriticalityC, diverges indeed ak?u?
p=(5+15)/10. We used periodic boundary conditions and=L"".
24 system sizes in the range<4 < 360. Again, the actual
simulations were performed for two integer numbers of va-
cancies, and the tricritical quantities are obtained by a linear
interpolation. This model serves an independent test for the The q=4 Potts model is a marginal case of the tricritical
constrained behavior discussed in the above subsection. ViRotts model in the sense that the critical and the tricritical
observe that, as expected, the constrained tricritical phenonforanch merge afj=4; accordingly, the subleading thermal
ena of this lattice gas and of the BC model are very similar.
For instance, the constrained tricritical specific heat of the 1.46

The exponenty; were fixed at -1, and the data for small
system sizesL<10 were discarded. We obtairy,,
=0.8047), in agreement with the exact valyg=4/5.

C. Baxter’s hard-square model

E. Dilute q=4 Potts model

lattice gas also reaches a finite valuelad, illustrated in 145 _q““ﬁﬂ\ag
Fig. 11. For this reason, we do not give a detailed account of a4l e
the numerical results. ’ T
143} .
D. Tricritical q=3 Potts model Al
Vilalt RN
Using a combination of Metropolis, Wolff, and geometric 14l =
cluster steps, we first simulated the unconstraiqed Potts )
model with vacancies at the tricritical poinft24] K 139+
=1.649 9185) and D,=3.152 171). The system sizes were 138+ =1
taken in the range € L < 32, and the specific he@and the 1-370 0.01 0.02 0.03 0.04
energy densitye) were sampled. As expected, we found that ) ];_9,7 ) '

these data are well fitted by E®2), with the exact thermal

exponentsy;;=12/7 andy,,=4/7. FIG. 13. Energy densitye) of the constrained=3 Potts model
Next, we performed constrained simulations at tricritical-at tricriticality vs LY22=L"97 as predicted by the Fisher
ity using the determined tricritical vacancy densi4] p, renormalization.
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FIG. 14. Structure factor of the specific he@t of the con-

strainedq=3 Potts model at tricriticality vé 2= 107 FIG. 16. Specific hea€ of the constrained dilutgj=4 Potts

model at the fixed point v&2 %12=1/L. The significant curvature

) ) ] suggests that the approximation for the data&Cdby the term with
exponent vanishes—i.ey;,=0 [19]. In this case, we expect ¢, in Eq. (30) is insufficient.

that the leading thermal exponent in constrained systems is
equal to 2+y,;,=1/2. This corresponds with cagé) in Sec. (30)
[ll. Constrained simulations were performed at the “fixed”

point—i.e., Ki=1.457901) and p;=0.212072) [24]— and obtainc,=3.96044), c;=-2.1(4), and c,=-231). The
where logarithmic corrections due to the marginal field assoamplitudec, is relatively small in comparison witty,, which
ciated withy,, are absent. The system sizes took 20 values iRxplains the strong nonlinearity in Fig. 16.

the range 1L <280. TheC data are plotted in Fig. 15.
They show no indication that the constraint introduces
slowly convergent finite-size corrections. According to Eq.
(2_4)' the C and(e) data are plotted versus 1 /andL 3/2, n The geometric cluster method serves well for a detailed
Figs. 16 and 17, respectively. In cpntrast to _the t”cr't'calinvestigation of the finite-size scaling behavior of con-
systems discussed above, the leading terms in(E4.are  gyrained tricritical systems. For thg=4 Potts model with
insufficient even to approximately describe these numerica)cancies and the other systems, the constrained data can be
data. Remarkably, the energy dens{y has a maximum  eypjained by the second and first cases of the Fisher renor-
when the system size increases. The data were fitted by malization described in Sec. Ill, respectively. For clarity, a

comparison of the unconstrained and constrained tricritical

C= Co + ClL_l + CzL_3/2

V. DISCUSSION

(& =ept+ell ¥+ el 2+el ™52 (29)  scaling behavior of several quantities is listed in Table II.
These include the energy dens{g), the specific heat, the
where the exponents were fixed a8/2=-y,;, —2=y;,—2,  structure factoiC,, and the magnetic susceptibilify These

and -5/2=+y,, - 1. After discarding the data for small sys- data illustrate that the scaling behavior of conventional ener-
tem sizes L<12, the fit yields e,=1.3293774), e,  gylike quantities is significantly modified under the con-
=1.532), e,=-11.002), ande;=12.244), where we quote er- straint, while that of magnetic quantities and structure factors
ror margins of two standard deviations. The constaptnd

e, have opposite signs. Similarly, we fitted t@edata by 1.332
1.33 pwee-ma
180 . ; . . . .
160l ] 1.328 1 .
140 - 1.326 | N .
120 A 1324+ ey
1007 V1322} AN
(_)w 80 L - . \l\
6ol 1.32f
40 + 1.318 | S
20 r l’./ | \\
P 1.316
or 1.314 : : ' —*
-20O 0 100 150 200 250 300 0 0.005 O.OIL_S/ 2().015 0.02  0.025
L

FIG. 15. Structure factor of the specific he@ of the con-

FIG. 17. Energy densitye) of the constrained dilutg=4 Potts

strained diluteq=4 Potts model at the “fixed” point vis®1 2=,  model at tricriticality vsLYi="3/2 The significant curvature sug-
The approximate linearity suggests that the leading expone@for gests that the approximation for the data@f by the term withe,
is still y;1=3/2. in Eq. (29) is insufficient.
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TABLE Il. Leading finite-size scaling behavior ¢€), C, andC;  theories is not always obvious. Thus, it seems justified to ask
of unconstrainedun) and constrainedco) tricritical systems, in-  the following questions(1) In addition to the Baker-Essam
cluding diluteq=1, 3, and 4 state Potts models, the Blume-Capelmodel[35], can one further test the theoretical predictions in

(BC) model, and Baxter’s hard-squa(idS) model. Refs.[11] and[12] in other systems? In particular, can one
observe the aforementioned “special” tricritical poir®)
Model q=1 BC HS q=3 q=4 How are the RG calculatiorjd 3] related to the Fisher renor-
un 1 _15 15 o7 _1 malization mechanism3) How can the effect of the sub-
(e L L L L L . . . . .
_ _ _ _ _ leading thermal field be included in the RG calculations
<e>co L 1 L 6/5 L 6/5 L 97 L 3/2 [13]7
cen L™ Lo Lo Lo L Although the mean-field theory is “unrealistic” in general,
cee InL L-25 L~25 Lo L it can yield an intuitive physical picture of a phase transition.
c" L7 L6/ L6/ L7 L Moreover, for a sufficiently high spatial dimensionality, the
cLe L7 L6/5 L6/5 o7 L mean-field theory can correctly predict universal parameters.
x4 L oL/48 L77/10 L77/40 |38/21 L74 Therefore, we investigatefil4] the influence of the con-
e | 91/48 L77/10 L77/40 38/21 L7/ straint on the mean-field version of the Blume-Capel model.

Just as in finite spatial dimensions, the mean-field BC model
) ] has a line of second- and first-order transitions and a tricriti-
remains unchanged. Generally speaking, the agreement bgy| point. However, under the constraint, it can be shown that

tween the numerical results and the theorgimntitatively  he whole transition line reduces to mean-fietitical Ising
satisfactory. like.

During the derivations of the scaling formulas in Sec. Il
the Fisher renormalization mechanism makes essential use
the universal reno_rmalization exponents in the gncqnstrainegés mentioned in Sec. lll. It is obvious that including sublead-
:Liif;fggi’ tﬂgnp?rlteys:r?t gi?g;?:g t?/}pl)eng)éo?s“t?aisrlmrtng(l){as ing terms leads to additional finite-size corrections besides

. . g . YRose arising from the irrelevant scaling fields. In many cases
modify the universality class, and thus the critical exponent 8-10,37,38 these additional terms can be important and
in the constrained and unconstrained systems are directly r%q .

. : . L nus should be taken into account properly. In fact, it was
lated. We further demonstrate this point by investigating the : L :
scaling behavior of the structure factags and P, which teported 37,38 that, in severatritical systems, the leading

. : terms of the constrained specific h€&gare so small that the
remains unchanged under the constraint. Therefore, on the., .~ scaling behavior o is mainly described by the

basis of the summary in th‘? above par'agraph,. we ConCIUdgubleading terms. Even for the percolation model in wi@ich
that the Fisher renormalization mechanism straughtforwardl3{S zero, a correction-to-scaling of an exponent —0(BD&x-

and completely describes the essential physics of the con- : . :
strained scaling behavior. It then seems that there is no ang_ts [38] in two dimensions when the total number of occu-

parent need to apply other theories. Nevertheless, in this co ied bonds and sites is fixed at criticality. In the language of

text, we mention Imry's theory11,12,3§ for constrained inite-size scaling, the exponents for the subleading terms

critical phenomena, which is more general and includes th&a" be descnbeEB.S].k.)y N2y, -d, Whergn:1,2,... IS an
Fisher renormalization mechanigié] as a special case. This integer. For the tricritical Potts systems in the present paper,
theory has been applied to the Baker-Essam m{@&] a these exponents aren#/4 forq=1, -n8/5 forq=2, -n10/7

compressible Ising model, where a “special” tricritical point f(gr?ezcﬁé)?gd d:qef?(; ?h:e4irfflg/;istusltc;z;ﬁnco:‘?éalggsﬁhne\,\g:)mg}gu-
was reported. Such a point, where no renormalization of; 9 '

critical exponents occurs even for systems with 0, has ions from the subleading terms are insignificant and were

not been observed in the present investigation. For the e){_requently neglected in the present finite-size analyses.

perimental datd2] at the\ transition in the®He-*He mix-
tures, both the Fisher approach and the RG calculations of
Imry and co-workerg13] can be employed. This has been  We acknowledge valuable communications with Professor
further confirmed 14] by the Monte Carlo simulations of the M.E. Fisher, Professor Y. Imry, and Professor J.M.J. van
tricritical Blume-Capel model in three dimensions. Although Leeuwen. This research is supported by the Dutch FOM
the RG calculation$13,36 can be regarded to correspond foundation (“Stichting voor Fundamenteel Onderzoek der
with the second case of the Fisher renormalization mechavaterie”) which is financially supported by the NWONed-
nism, as described in Sec. lll, the connection of these twerlandse Organisatie voor Wetenschappelijk Onderzoek”

Finally, we remark that, in our application of the Fisher
normalization mechanismonly the leading terms are kept,
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